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– Les documents et la calculatrice ne sont pas autorisés.

– Il est rappelé que :
‹ toute affirmation doit être rigoureusement justifiée,
‹ tout résultat obtenu doit être mis en valeur (encadré ou souligné).

– La clarté du raisonnement et la qualité de la rédaction sont autant de gages de bonne compréhension et compteront pour
une part non négligeable dans l’appréciation de la copie.

– Si un candidat repère ce qui lui semble être une erreur d’énoncé, il est invité à le signaler sur sa copie et à poursuivre sa
composition en expliquant les raisons des initiatives qu’il est amené à prendre.

‹ ‹ ‹

Exercice 1 – Un sous-anneau de Q
On considère l’ensemble

A “

"

n

2k ` 1
, n, k P Z

*

.

1. Montrer que A est un sous-anneau de pQ,`,ˆq.
2. a. Soient n, k P Z avec n ­“ 0. Montrer :

2k ` 1

n
P A ñ n est impair.

b. En déduire que x P A est inversible dans A si et seulement s’il est de la forme

x “
n

2k ` 1
, avec k P Z, et n entier impair.

Exercice 2 – Convolution de suites
Dans cet exercice, on note E “ RN l’ensemble des suites réelles. On rappelle que E est muni de l’addition des suites :
si u, v P E, la suite u ` v est définie par :

@n P N, pu ` vqn “ un ` vn.

On munit par ailleurs E de la loi interne notée ‹ définie de la manière suivante : si u, v P E, la suite u ‹ v P E est
définie par

@n P N, pu ‹ vqn “
n
ř

k“0

ukvn´k.

1. Rappeler la définition de la commutativité pour la loi ‹, et montrer que ‹ est commutative.
2. On considère la suite e définie par :

@n P N, en “

"

1 si n “ 0,
0 si n ­“ 0.

Pour u P E et n P N, calculer pe ‹ uqn. Qu’en déduit-on ?
3. Montrer que ‹ est distributive par rapport à `.
4. Rappeler la définition de l’associativité pour la la loi ‹, et montrer que ‹ est associative.
5. Quelle est la structure algébrique de pE,`, ‹q ? Justifier.
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6. Quels sont les inversibles de E ?

Exercice 3 – Inversibles de Zr
?
2s

On considère
A “ ta ` b

?
2, a, b P Zu.

1. Montrer que A est un sous-anneau de pR,`,ˆq.
2. a. Montrer que pour tout x P A, il existe un unique couple pa, bq P Z2 tel que x “ a ` b

?
2.

Dans toute la suite, pour tout x P A tel que x “ a ` b
?
2 avec a, b P Z, on note

x̄ “ a ´ b
?
2, et Npxq “ xx̄.

b. Pour tout x P A, exprimer Npxq en fonction de a, b P Z tels que x “ a ` b
?
2, et justifier que Npxq P Z.

c. Montrer que pour tous x, y P A, Npxyq “ NpxqNpyq.
3. Montrer que x P A est inversible dans A si et seulement si Npxq P t´1, 1u.

On note : ˛ Aˆ l’ensemble des inversibles de A,
˛ Aˆ

1 “ AˆXs1,`8r l’ensemble des inversibles x de A tels que x ą 1.

4. a. Montrer que si x P Aˆ
1 , alors ´1 ď x̄ ď 1.

b. En déduire que α “ 1 `
?
2 est le plus petit élément de Aˆ

1 .
5. Montrer que si x P Aˆ

1 , il existe un entier n P N‹ tel que αn ď x ă αn`1.
6. En déduire que Aˆ

1 “ tαn, n P N‹u.
7. Déterminer l’ensemble Aˆ.

Exercice 4 – Interpolation de Lagrange et polynômes de Hilbert
À l’exception de la question 4, les deux parties sont indépendantes.

Partie I – Interpolation de Lagrange

Dans cette partie, K désigne R ou C.
On considère n P N, x0, x1, . . . , xn P K deux à deux distincts, et y0, y1, . . . , yn P K. On cherche à montrer qu’il existe
un unique polynôme P P KnrXs tel que

@j P J0, nK, P pxjq “ yj . (1)

1. Unicité. On suppose que P,Q P KnrXs sont deux polynômes tels que

@j P J0, nK, P pxjq “ Qpxjq “ yj .

a. On note R “ P ´ Q. Montrer que R P KnrXs.
b. Conclure à l’unicité.

2. Existence. Pour tout i P J0, nK, on pose

Li “

n
ź

k“0
k ­“i

X ´ xk

xi ´ xk
.

À titre d’exemple, si n “ 2, on a défini L0 “
pX´x1qpX´x2q

px0´x1qpx0´x2q
, L1 “

pX´x0qpX´x2q

px1´x0qpx1´x2q
, L2 “

pX´x0qpX´x1q

px2´x0qpx2´x1q
.

a. Justifier que pour tout i P J0, nK, le polynôme Li est de degré n.

b. Pour tout i P J0, nK, calculer Lipxiq. Pour j P J0, nK tel que i ­“ j, calculer Lipxjq.

c. En déduire que si P “
n
ř

i“0

yiLi, alors P vérifie (1).
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3. Montrer que pour tout polynôme P P KnrXs,

P “

n
ÿ

i“0

P pxiqLi

Partie II – Polynômes stabilisant Q et Z

On s’intéresse dans cette partie aux polynômes P P CrXs stabilisant un ensemble K Ă C, c’est-à-dire que

@x P K, P pxq P K.

On note QrXs l’ensemble des polynômes à coefficients dans Q, et ZrXs l’ensemble des polynômes à coefficients dans
Z.

4. Cas K “ Q. Montrer que pour tout P P CrXs,

p@x P Q, P pxq P Qq ô P P QrXs.

On pourra appliquer la question 3 à un polynôme P P CnrXs en choisissant x0 “ 0, x1 “ 1, . . . , xn “ n.
5. Cas K “ Z. Pour tout k P N‹, on note

Hk “
1

k!

k´1
ź

i“0

pX ´ iq “
XpX ´ 1q . . . pX ´ k ` 1q

k!
.

On note par ailleurs H0 “ 1.

a. Montrer que pour tout n P Z,

Hkpnq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 si 0 ď n ď k ´ 1
ˆ

n

k

˙

si n ě k

p´1qk
ˆ

k ´ n ´ 1

´n ´ 1

˙

si n ă 0

b. Soit k P N. Montrer que pour tout n ě k,
n

ÿ

i“k

ˆ

i

k

˙

“

ˆ

n ` 1

k ` 1

˙

.

On pourra par exemple raisonner par récurrence.
c. En déduire que pour tous k, n P N,

n
ÿ

i“0

Hkpiq “ Hk`1pn ` 1q.

d. Soient P P CrXs un polynôme non constant, et

Q “ P pX ` 1q ´ P pXq.

Exprimer degP en fonction de degQ.
e. Pour tout k P N‹, exprimer P pkq ´ P p0q en fonction de Qp0q, . . . , Qpk ´ 1q.
f. Montrer que les polynômes P P CrXs tels que @x P Z, P pxq P Z sont exactement les polynômes de la forme

P “

n
ÿ

i“0

aiHi

où a0, . . . , an P Z.
On pourra raisonner par récurrence sur le degré de P .

‹ ‹ ‹
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