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– Les documents et la calculatrice ne sont pas autorisés.

– Il est rappelé que :
‹ toute affirmation doit être rigoureusement justifiée,
‹ tout résultat obtenu doit être mis en valeur (encadré, souligné ou surligné).

– La clarté du raisonnement et la qualité de la rédaction sont autant de gages de bonne compréhension et compteront pour
une part non négligeable dans l’appréciation de la copie.

‹ ‹ ‹

Exercice 1 – Questions indépendantes
1. Déterminer tous les réels x tels que ?

4x` 5 “ x.

2. Soit n P N‹.

a. Rappeler la formule de Pascal. Calculer
n

ÿ

k“1

ˆˆ

n

k

˙

`

ˆ

n

k ´ 1

˙˙

.

b. Pour a0, . . . , ak P R, préciser la valeur de
n

ÿ

k“1

pak ´ ak´1q. Calculer
n

ÿ

k“1

ˆˆ

n

k

˙

´

ˆ

n

k ´ 1

˙˙

.

3. Soit n P N‹.

a. Calculer
n

ÿ

i“1

n
ÿ

k“i

2k.

b. En exprimant
n

ÿ

i“1

n
ÿ

k“i

2k d’une autre manière, déduire de la question précédente la valeur de
n

ÿ

k“1

k 2k.

4. Soit x P R. On considère la proposition P : p@ ε ą 0, |x| ă εq ñ px “ 0q.
a. Écrire la négation de P.
b. Écrire la contraposée de l’implication P.
c. Montrer P.

Exercice 2 – Résolution d’une équation fonctionnelle
On cherche à déterminer, en raisonnant par analyse-synthèse, toutes les fonctions f : R Ñ R vérifiant la relation :

@x, y P R, |fpxq ` fpyq| “ |x` y| (‹)

1. Préliminaire. Soit x P R. Montrer que si |1 ´ x| “ |1 ` x|, alors x “ 0.
2. Analyse. On considère une fonction f : R Ñ R vérifiant (‹).

a. Déterminer fp0q.
b. En déduire : @x P R, pfpxq “ x ou fpxq “ ´xq.
c. On suppose que fp1q “ 1. En raisonnant par l’absurde, montrer : @x P R, fpxq “ x.
d. On suppose que fp1q “ ´1. Montrer : @x P R, fpxq “ ´x.
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e. Qu’en déduire sur f ?
3. Synthèse. Conclure.

Exercice 3 – Inégalité de Cauchy-Schwarz
Cet exercice vise à obtenir une nouvelle preuve de l’inégalité de Cauchy-Schwarz : pour un entier n P N‹ fixé, on
souhaite démontrer que pour tous a1, . . . , an, b1, . . . , bn P R on a

˜

n
ÿ

k“1

akbk

¸2

ď

˜

n
ÿ

k“1

a2k

¸

ˆ

˜

n
ÿ

k“1

b2k

¸

.

1. Démontrer l’inégalité dans le cas où
n
ř

k“1

a2k “ 0.

2. On suppose que
n
ř

k“1

a2k ‰ 0. On considère le polynôme du second degré en X défini par :

P pXq “

n
ÿ

k“1

pakX ` bkq
2
.

a. Écrire P pXq sous la forme AX2 `BX ` C où A,B,C P R.
b. Justifier que le discriminant du polynôme P pXq est négatif.
c. Conclure.

Exercice 4 – Autour de la suite de Fibonacci
On considère la suite punqnPN définie par récurrence par :

#

u0 “ 0, u1 “ 1,

@n P N, un`2 “ un ` un`1

Suite de Fibonacci et nombre d’or

1. Montrer par récurrence double que pour tout entier n ě 5, un ě n.
2. En déduire lim

nÑ`8
un.

3. Montrer que l’équation
x2 “ x` 1 (1)

admet deux solutions réelles, notées φ et ψ, avec φ P R` et ψ P R´. On explicitera φ et ψ.
On appelle φ le nombre d’or.

4. Montrer que ψ “ ´ 1
φ .

5. Montrer par récurrence double :

@n P N, un “
1

?
5

pφn ´ ψnq “
1

?
5

ˆ

φn ´

ˆ

´
1

φ

˙n˙

.

6. En déduire que lim
nÑ`8

un`1

un
“ φ.

Ce dernier résultat fournit un moyen d’approcher le nombre d’or par des rationnels.

Propriétés de la suite de Fibonacci

On montre ici des propriétés indépendantes de la suite de Fibonacci.
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7. Soit n P N‹. Pour tout k P J0, nK, exprimer uk en fonction de uk`2 et uk`1, et en déduire une nouvelle expression
de la somme

n
ÿ

k“0

uk,

puis la calculer (on pourra effectuer le changement d’indice ℓ “ k ` 1).

8. Montrer à l’aide d’une récurrence double : @n P N‹, un`1 “
n
ř

k“0

`

n´k
k

˘

.

Théorème de Zeckendorf

On souhaite montrer le théorème suivant.
Théorème de Zeckendorf. Tout entier N P N‹ s’écrit comme la somme de termes de la suite punqně2

distincts non consécutifs. De plus, à ordre des termes dans la somme près, cette décomposition est unique.

9. Montrer que la suite punqně2 est strictement croissante.
10. Montrer que pour tout k P N‹, si N P N‹ s’écrit

N “ un1
` . . .` unk

avec n1, . . . , nk P J2,`8J et ni`1 ą ni ` 1 pour tout i P J1, k ´ 1K, alors N ă unk`1.
On pourra raisonner par récurrence sur k.

Pour tout N P N‹, on pourra utiliser sans démonstration l’existence d’un plus grand entier M tel que uM ď N .

11. Déduire de la question 10 que si un entier N P N‹ est la somme de termes de la suite punqně2 distincts et non
consécutifs, alors uM est un des termes de la somme, où M est le plus grand entier tel que uM ď N .

12. Montrer l’existence : tout entier N P N‹ s’écrit comme la somme de termes de la suite punqně2 distincts non
consécutifs.
On pourra raisonner par récurrence forte.

13. Montrer l’unicité (à ordre des termes près) de la décomposition de tout entier N P N‹ en somme de termes de
la suite punqně2 distincts non consécutifs.
On pourra raisonner à nouveau par récurrence forte.

‹ ‹ ‹
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