MPSI — Lycée Montesquieu 2025-2026

DS 1

Exercice 1 — Questions indépendantes

1. Déterminer tous les réels = tels que

Vidr+5 = .

2. Soit n € N*.

a. Rappeler la formule de Pascal. Calculer Z ((n) + ( " ))

= k k-1
b. P . R, préciser la valeur d — . Calcul — .
our ao, - -.,ar € R, préciser la valeur de g ay — ax—1). Calculer ];1<<k> (k—l))

3. Soit n € N*.

a. Calculer Z Z 2k,

i=1k=i
b. En exprimant Z Z 2% d’une autre maniére, déduire de la question précédente la valeur de Z k2k.
i=1 k=i k=1

4. Soit x € R. On considére la proposition P : (Ve >0, |z| <¢e) = (z =0).
a. Ecrire la négation de P.
b. Ecrire la contraposée de I'implication P.
c. Montrer P.

1. On raisonne par analyse-synthese.

— Analyse. Soit x € R tel que v/4x + 5 = x. Alors, on a (\/4x + 5)2 = 2%, cest-a-dire 4z + 5 = z°. On en déduit
que z est racine du polynéme P = X2 —4X — 5.

Comme P a pour racines —1 et 5, on a donc z € {—1,5}.

— Synthése. On constate que 5 est solution de ’équation v/4x — 5 = x, mais —1 ne l’est pas.

V4 5 = x admet 5 pour unique solution ‘

Finalement,

2. a. Par la formule de Pascal, on a

$(0)-62)) - 50) - B0 () () -

b. On remarque que la somme est télescopique. On a alors
& n n n n
— = — =1-1= .
];1 ((k> (k - 1)) (") <O> o

n n nooon—itl © .
222’“:22’72_1 = Y@ -2) = 22”“ 221 = n2"t' 22" 1)

i=1k=1 =1 i=1 i=1

3. a. On a :

= |(n—1)2"+2|.

b. En permutant les sommes dans la somme double triangulaire, on obtient :

IPIEEDIDIEIED LD NI W3

i=1k=1 k=1i=1 k=1 i=1 k=1
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On déduit alors de la question précédente que 2 K2k = (n—1)2" 4+ 2.
k=1

4.  a. La négation de P s’écrit : (Ve >0, |z| <€) et = # 0.
b. La contraposée de P : s’écrit z # 0 = (e > 0, |z| = ).
c. Pour montrer que P est vraie, on peut montrer la contraposée de P.

Soit = € R. Supposons que z # 0, et montrons 3¢ > 0, |z| > e.
On pose € = |z|. Comme z # 0, on a |z| > 0, ce qui donne € > 0. Par ailleurs, on a bien |z| = €, ce qui
conclut.

Exercice 2 — Résolution d’une équation fonctionnelle

On cherche a déterminer, en raisonnant par analyse-synthese, toutes les fonctions f : R — R vérifiant la relation :
Ve,yeR, |f(z) + f(y)] = [z +yl (*)

1. Préliminaire. Soit = € R. Montrer que si |1 — z| = |1 + z|, alors « = 0.
2. Analyse. On considére une fonction f : R — R vérifiant (*).
a. Déterminer f(0).
b. En déduire : Vz € R, (f(z) = z ou f(z) = —x).
¢. On suppose que f(1) = 1. En raisonnant par absurde, montrer : Yz € R, f(z) = z.
d. On suppose que f(1) = —1. Montrer : Vx € R, f(z) = —=z.
e. Qu’en déduire sur f7?

3. Synthese. Conclure.

1. Si|l —x| = |1+ |, alors |1 — z|® = |1 + z|?, cest-a-dire (1 —z)? = (1 + z)2.
Comme (1 +2)? — (1 —2)% = (1+2x+2?) — (1 — 2z + 2%) = 4, on en déduit que .
2. a. Comme f vérifie (x), on a |f(0) + f(0)| = |0 + 0|, ce qui donne 2|f(0)| = 0. Par conséquent, | f(0) =0 |.
b. Soit z € R. La relation () en choisissant y = 0 donne alors

|f(x) + f(0)] = |x|, donc |f(z)| =]|z|, ce quientraine f(z)= =z ou f(z)= —=z.

On a donc bien :‘Va:e R, (f(z) =z ou f(z) = —x) ‘

c. On raisonne par ’absurde, et on suppose qu’il existe z € R tel que f(z) # x. D’aprés la question précédente,
on a alors f(x) = —z. Ainsi, la relation (x) (ot l'on choisit cette fois y = 1), donne |f(z) + f(1)| = |z + 1].
Comme on a aussi |f(z) + f(1)| = | — = + 1|, on en déduit alors que |1 —z| = |z + 1|.

Par la question 1, on en déduit alors que x = 0. Par conséquent, on a f(z) = x, ce qui est une contradiction.
On a ainsi prouvé :

‘VmER, f(x)=x‘

d. On introduit la fonction g = —f. On a alors g(1) = —f(1) = 1. Par ailleurs, on remarque que g vérifie ().
D’aprés la question précédente, on a alors : Vz € R, g(z) = z, c’est-a-dire

’VmER, f(m):fx‘

N.B. : on pouvait aussi bien str procéder comme dans la question précédente.

e. Comme on a vu que f(1) € {—1,1}, on déduit des deux questions précédentes que f € {f1, fo}, ol f1 :x —
et fo:x— —.

3. Comme dans la question précédente, on note fi : x — x et fa : © — —zx. Pour tous z,y,R, on a

1f1(@) + A =le+yl, et [f2(x) + 20) = |-z -yl = |z +yl.
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Par conséquent, les fonctions fi et fo vérifient (x).

On a donc montré que | f1 et f2 sont les seules fonctions de R dans R vérifiant (*) ‘

Exercice 3 - Inégalité de Cauchy-Schwarz

Cet exercice vise a obtenir une nouvelle preuve de 'inégalité de Cauchy-Schwarz : pour un entier n € N* fixé, on

souhaite démontrer que pour tous aq,...,a0,,b1,...,b, € Ron a
n 2 n n
k=1 k=1 k=1

1. Démontrer I'inégalité dans le cas ot ai = 0.

1

TMz

n
2. On suppose que Y, a% # 0. On considere le polynome du second degré en X défini par :
k=1

P(X) = i (arX + bg)”.
k=1

a. Ecrire P(X) sous la forme AX? + BX + C ou A, B,C € R,
b. Justifier que le discriminant du polynoéme P(X) est négatif.

¢. Conclure.

e B
1. On suppose que a? + ...+ a2 = 0. Comme a?, ..., a2 sont positifs, ceci entraine que pour tout k € [1,n], ai =0et
donc ar = 0. Ainsi, le membre de gauche et le membre de droite sont nuls, I'inégalité est vérifiée.
2. a. On a

POX) = 3 EX? + 20X 40 (Zai> X2+2<Zakbk>x+ (Zbi>,
k=1 =] = =

d’ott écriture recherchée avec | A = <2 ai), B =2 ( > akbk), et C = (Z bi) .
k=1

k=1 k=1

b. Pour tout z € R, on a P(z) > 0. Comme la fonction  — P(x) est de signe constant, le polynéme du second
degré P a un discriminant négatif.

¢. Par la question précédente, on a B2 — 4AC < 0, c’est-a-dire :

4(2 akbk> —4 (2 ai) <Z bi) <0, donc (2 akbk> < (Z ai) ( bi)
k=1 k=1 k=1 k=1 k=1 k=1

Exercice 4 — Autour de la suite de Fibonacci

On consideére la suite (uy,) définie par récurrence par :

neN
ug =0, u; =1,
VneN, upt2 = up + Upt1
Suite de Fibonacci et nombre d’or

1. Montrer par récurrence double que pour tout entier n > 5, wu, = n.
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2. En déduire nEI-QI-IOO Uy -
3. Montrer que I’équation
2 =x+1 (1)
admet deux solutions réelles, notées ¢ et ¥, avec ¢ € Ry et 1 € R_. On explicitera ¢ et .
On appelle ¢ le nombre d’or.
4. Montrer que ¢) = —+.

©
5. Montrer par récurrence double :

et o= o= - ()

:(p'

6. En déduire que lim 2+t
n—+o0w Un

Ce dernier résultat fournit un moyen d’approcher le nombre d’or par des rationnels.

Propriétés de la suite de Fibonacci

On montre ici des propriétés indépendantes de la suite de Fibonacci.

7. Soit n € N*. Pour tout k € [0, n], exprimer uy, en fonction de w42 et ug41, et en déduire une nouvelle expression

de la somme
n
PIRTS
k=0

puis la calculer (on pourra effectuer le changement d’indice ¢ = k + 1).
n
NET y . * —k
8. Montrer a 'aide d’une récurrence double : Vn e N*, uy,4; = kZO ("7

Théoréeme de Zeckendorf

On souhaite montrer le théoréme suivant.

Théoréme de Zeckendorf. Tout entier N € N* s’écrit comme la somme de termes de la suite (up), o
distincts non consécutifs. De plus, a ordre des termes dans la somme pres, cette décomposition est unique.

9. Montrer que la suite (uy,),-, est strictement croissante.

10. Montrer que pour tout k € N*  si NV € N* s’écrit

N = up, +... 4+ Up,
avec nq,...,ny € [2,+0[ et n;11 > n; + 1 pour tout i € 1,k — 1], alors N < typ, +1.

On pourra raisonner par récurrence sur k.
Pour tout N € N*| on pourra utiliser sans démonstration l’existence d’un plus grand entier M tel que up; < N.

11. Déduire de la question 10 que si un entier N € N* est la somme de termes de la suite (u,), -, distincts et non
consécutifs, alors ups est un des termes de la somme, ou M est le plus grand entier tel que uy; < N.

12. Montrer 'existence : tout entier N € N* s’écrit comme la somme de termes de la suite (u,),-, distincts non
consécutifs.
On pourra raisonner par récurrence forte.

13. Montrer I'unicité (a ordre des termes pres) de la décomposition de tout entier N € N* en somme de termes de
la suite (un),, distincts non consécutifs.

On pourra raisonner d nouveau par récurrence forte.

1. Montrons par récurrence double que pour tout n € N tel que n = 5, la proposition P(n) : “un = n” est vraie.
— Onawus =52=5et ug =8 =6, donc P(5) et P(6) sont vérifiées.

— Soit n un entier tel que n = 5. On suppose que u, = n et up41 = n+1, et on souhaite montrer que un4+2 = n+2.
On a
Unt2 = Un+Ung1 = n+(n+1) = 2n+1 = n+2

car2n+1—(n+2) = n—1 = 0. Ainsi, P(n + 2) est vraie.
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Le principe de récurrence double assure alors : | Vn = 5, u, = n.

2. Comme liIE = +00, on déduit de la question précédente et du théoreme de comparaison que lirf Up = +00 |.
n—+0o0 n—+0o0

3. Les solutions de ’équation 22 = x + 1 sont les racines du polynéme du second degré P(X) = X2 - X —1. Le
polynéme P a pour discriminant 5, et admet donc deux racines réelles ¢, données par

S0_1+\/5 _1-4/5

5 et 5
Par stricte croissance de la fonction racine carrée, on a v/5 > /4 = 2. Par conséquent, 1 — /5 <1 —2 = —1, donc
1 < 0. Ainsi,
l’équation 22 = = + 1 admet une unique solution réelle positive, qui est ¢ = 1+2‘/5 .
4. On a:
wzl_\/g*(l_\/g)(l—i_\/g): —4 = =2 , donc on a bien 1/1:71.
2 2(1 +/5) 21++5) 1+45 ¢

N.B. : on powvait aussi remarquer que le produit des racines du polynéme X — X —1 vaut %1 = —1, donc ptp = —1.

5. Montrons par récurrence double que pour tout n € N, la proposition P(n) : u, = % (o™ — ™) est vraie.
-~ Sin=0,o0na % (¢™ —4™) =0, donc P(0) est vraie.

Sin=1,ona % (™ =) = % (p—1) = % (HQ\/g — 1+2‘/5) =1, donc P(1) est vraie.

— Soit n € N. On suppose que P(n) et P(n + 1) sont vraies. Montrons que P(n + 2) est vraie :
Unt2 = Up + Uil = (So’ﬂ _ wn + S0n+1 _ wn+1)

(" + @) =™ (1 + 1))

_ ((pn+2 _ wn+2)

N
NG

e

car, @ et ¢ étant solutions de 22 = 2 + 1, on a 1 + ¢ = ? et 1 4+ ¢ = %, Ainsi, P(n + 2) est vraie.

On a donc bien montré que | pour tout n € N, u, = % (™ — ™) |.

6. D’apres la question précédente, on a pour tout n € N,

n+1 n+1
+1 1 ) i +1 (="t I i
Unt1 - (_5) _ P — (va")'“ _ i (1_ P2 ) — @1_%
B " - _ =nn a —1n - _ E=nn
Un Son _ (7i) (,077’ on Lp" (1 — <¢22L ) 1 p2n
Comme ¢ > 1, 0on a ¢?> > 1, donc lim ¢** = lim (902)n = 400, donc comme pour tout n € N,
n—+00 n——+0o0
_ n
®» 4 2
_1\n N . _1\yn+1 , .
le théoreme d’encadrement entraine que lim ( ;1)1 = 0. De méme, lim % = 0. On en déduit alors :
n—+o0w ¥ n—+o0 ¥
9 Un+1
lim —— =
n—+0  Up
7. On a
n n n+1
Z U = Z Uk+2 — Uk4+1 = Z Ug4+1 — Ug,
k=0 k=0 £=1
en ayant recours au changement de variable ¢ = k + 1 dans la derniere somme. Par télescopage, on a alors
n
Zuk = Up42 — UL = Unt2 — 1.
k=0
L k
8. Montrons par récurrence double que pour tout n € N*, on a P(n) : uny1 = >, (%)

k=0
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(1) + ((1)) = 1 = ug, donc P(1) est vraie.

- Sin=1,on =

("") =
(") =

— Soit n € N. On suppose que P(n) et P(n + 1) sont vraies. Montrons P(n + 2) :

n+1 n
+1—-k —k
Un+3 = Un+2 +Un+1 = Z <n k > + Z (n k >

(2) 4+ (1) + (g) = 2 = ug, donc P(2) est vraie.

Sin =2, on & 1

n

a ),
k=0

n

a
k=0

k=0 k=0
- k S -1 il iie 1
Or, avec la changement d’indice £ = k+1,0ona >, (") = (") = ("9, car (") = 0. Ainsi,
k=0 =1 /=0
n+1 n+1 n+1
n+1—k n+1l—k n+2—k
k=0 ( k > k=0 k-1 k=0 k
car, par la formule de Pascal, ("+;_k) + (":1;’“) = (”+i_k) pour tout entier k. Ainsi, P(n + 2) est vraie.
n
On a donc bien montré que | pour tout n € N, upy1 = Y, (";k) .
k=0

9. Si n est un entier tel que n > 2, alors on a :
Untl = Un—1 + Up, dONC Upnt1 —Up = Up—1 =n—1 =1

d’apres la question 1. Par conséquent, on a tn+1 —un, > 0. On en déduit alors que (un)n>2 est strictement croissante.
10. On raisonne par récurrence sur k.
— Si k=1:on suppose que N est de la forme N = uy,, on a alors N < u,,+1 par stricte croissance de la suite
(u")nBQ'

— Soit k € N*. On suppose le résultat vrai au rang k—1. Si N s’écrit N = upn, +...+uUn, avec ni,...,ng € [2, +00[
et niy1 > n; + 1 pour tout i € [1,k — 1], alors par hypothése de récurrence,

Uny + oo FUngp_; < Unp_q+1-

On a ng > ni—1 + 1, donc ng—1 < nk — 1, et ng—1 + 1 < np — 1. Ainsi, un, ,+1 < uUn,—1 par croissance de la
suite (un),,, et

N =uUn, +...FUny_; T Uny < Uny_ 141+ Uny, < Unp—1 + Uny, = Uny+1-

On a donc N < un, +1, et la propriété est vraie au rang k.

On a donc bien montré que | la propriété est vraie pour tout k € N ‘

11. Soit N € N*. On suppose que N s’écrit
N = up, +...+ Un,,
avec ni,...,ng € Net n;41 > n;+1 pour tout 7 € [1, k—1]. On remarque que pour tout 7 € [1, k], on a nécessairement
Un; < N, donc n; < M.
On raisonne par ’absurde et on suppose de plus que le terme uas ne figure pas dans la décomposition ci-dessus.
Alors, pour tout 7 € [1,k], n; # M, ce qui entraine n; < M. En particulier, on a ny + 1 < M. Par conséquent, la

question précédente donne
N = Unpy + oo T Uny, < Ungp4+1 S UM S N,

donc N < N, et il y a contradiction. On a donc montré : ‘ il existe ¢ € [1, k] tel que wn, = uas |-

12. Montrons par récurrence forte sur N.

— On a 1 = uz, donc la propriété est vraie au rang 1.

— Soit N € N*. On suppose que la propriété est vraie aux rangs 1,..., N — 1, i.e. tous les entiers 1,..., N — 1
s’écrivent comme la somme de termes de la suite (un)n>2 distincts non consécutifs. Montrons la propriété au
rang IN.

Comme ci-dessus, on note M le plus grand entier tel que upr < N. Si N = uyy, le propriété est démontrée.
Sinon, comme up; = 1, on a N —ups € [1, N — 1]. Ainsi, par hypothése de récurrence, N — ups s’écrit

N —upm = Un; + ...+ Un,
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avec ni,...,ni € [2,4+00[ et ni11 > n; + 1 pour tout ¢ € [1,k — 1]. Par conséquent,

N = up, +...+ Un, +unp.

Il reste & montrer que M > ny + 1, et on aura bien montré la propriété au rang N. Supposons que M < ng + 1,
i.e. ny = M — 1. Par croissance de la suite de Fibonacci, on a alors un, > uar—1. Ceci entraine que
N = up, +upm 2 up—1 +um = Upm+1.

Finalement, N > uar+1 et il y a contradiction, car M est le plus grand entier tel que upr < N

Ainsi, | tout entier N € N* s’écrit comme la somme de termes de la suite (un)n>2 distincts non consécutifs ‘

13. Montrons par récurrence forte que pour tout N € N*, I'écriture N = up, + ... + upn, avec ni,...,nx € [2,+00[ et
ni+1 > n; + 1 pour tout i € [[1,k — 1] est unique.

— Si N=1:0naN = usz et cette écriture est unique car pour tout entier n > 2, on a u,, > 1.

— Soit N € N*. On suppose le résultat vrai pour les entiers 1,..., N — 1. Par la question 11., on sait que uns
figure dans la décomposition de N, ou M est le plus grand entier tel que uas < N.

Si N = un, Vécriture est unique car les termes de la suite (un)n>2 sont strictement positifs.

Sinon, comme N — up € [1, N — 1, Phypothése de récurrence entraine que ’écriture de N — up comme
somme de termes de (u,)>2 distincts non consécutifs est unique, ce qui donne 'unicité de ’écriture de N.

Ainsi, | Pécriture de tout N € N* comme somme de termes de la suite (un)n>2 distincts non consécutifs est unique |.

a. On peut alternativement trouver directement les solutions en ayant recours a la forme canonique :

2—z-1=0 & z-1?-2=0 & (z-3)?=2 = :ch%e{ ‘ég,‘ég}
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