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DS 1

Exercice 1 – Questions indépendantes
1. Déterminer tous les réels x tels que ?

4x` 5 “ x.

2. Soit n P N‹.

a. Rappeler la formule de Pascal. Calculer
n

ÿ

k“1

ˆˆ

n

k

˙

`

ˆ

n

k ´ 1

˙˙

.

b. Pour a0, . . . , ak P R, préciser la valeur de
n

ÿ

k“1

pak ´ ak´1q. Calculer
n

ÿ

k“1

ˆˆ

n

k

˙

´

ˆ

n

k ´ 1

˙˙

.

3. Soit n P N‹.

a. Calculer
n

ÿ

i“1

n
ÿ

k“i

2k.

b. En exprimant
n

ÿ

i“1

n
ÿ

k“i

2k d’une autre manière, déduire de la question précédente la valeur de
n

ÿ

k“1

k 2k.

4. Soit x P R. On considère la proposition P : p@ ε ą 0, |x| ă εq ñ px “ 0q.
a. Écrire la négation de P.
b. Écrire la contraposée de l’implication P.
c. Montrer P.

1. On raisonne par analyse-synthèse.

– Analyse. Soit x P R tel que
?
4x` 5 “ x. Alors, on a

`?
4x` 5

˘2
“ x2, c’est-à-dire 4x` 5 “ x2. On en déduit

que x est racine du polynôme P “ X2 ´ 4X ´ 5.
Comme P a pour racines ´1 et 5, on a donc x P t´1, 5u.

– Synthèse. On constate que 5 est solution de l’équation
?
4x´ 5 “ x, mais ´1 ne l’est pas.

Finalement, l’équation
?
4x´ 5 “ x admet 5 pour unique solution .

2. a. Par la formule de Pascal, on a

n
ÿ

k“1

˜˜

n

k

¸

`

˜

n

k ´ 1

¸¸

“

n
ÿ

k“1

˜

n` 1

k

¸

“

n`1
ÿ

k“0

˜

n` 1

k

¸

´

˜

n` 1

0

¸

´

˜

n` 1

n` 1

¸

“ 2n`1 ´ 2 .

b. On remarque que la somme est télescopique. On a alors

n
ÿ

k“1

˜˜

n

k

¸

´

˜

n

k ´ 1

¸¸

“

˜

n

n

¸

´

˜

n

0

¸

“ 1 ´ 1 “ 0 .

3. a. On a :
n

ÿ

i“1

n
ÿ

k“i

2k “

n
ÿ

i“1

2i
2n´i`1 ´ 1

2 ´ 1
“

n
ÿ

i“1

p2n`1
´ 2iq “

n
ÿ

i“1

2n`1
´

n
ÿ

i“1

2i “ n2n`1
´ 2p2n ´ 1q

“ pn´ 1q2n ` 2 .

b. En permutant les sommes dans la somme double triangulaire, on obtient :

n
ÿ

i“1

n
ÿ

k“i

2k “

n
ÿ

k“1

k
ÿ

i“1

2k “

n
ÿ

k“1

2k
k

ÿ

i“1

1 “

n
ÿ

k“1

k 2k.

1/7



MPSI – Lycée Montesquieu 2025-2026

On déduit alors de la question précédente que
n

ÿ

k“1

k 2k “ pn´ 1q2n ` 2 .

4. a. La négation de P s’écrit : p@ε ą 0, |x| ă εq et x ‰ 0.
b. La contraposée de P : s’écrit x ‰ 0 ñ pDε ą 0, |x| ě εq.
c. Pour montrer que P est vraie, on peut montrer la contraposée de P.

Soit x P R. Supposons que x ‰ 0, et montrons Dε ą 0, |x| ě ε.
On pose ε “ |x|. Comme x ‰ 0, on a |x| ą 0, ce qui donne ε ą 0. Par ailleurs, on a bien |x| ě ε, ce qui
conclut.

Exercice 2 – Résolution d’une équation fonctionnelle
On cherche à déterminer, en raisonnant par analyse-synthèse, toutes les fonctions f : R Ñ R vérifiant la relation :

@x, y P R, |fpxq ` fpyq| “ |x` y| (‹)

1. Préliminaire. Soit x P R. Montrer que si |1 ´ x| “ |1 ` x|, alors x “ 0.
2. Analyse. On considère une fonction f : R Ñ R vérifiant (‹).

a. Déterminer fp0q.
b. En déduire : @x P R, pfpxq “ x ou fpxq “ ´xq.
c. On suppose que fp1q “ 1. En raisonnant par l’absurde, montrer : @x P R, fpxq “ x.
d. On suppose que fp1q “ ´1. Montrer : @x P R, fpxq “ ´x.
e. Qu’en déduire sur f ?

3. Synthèse. Conclure.

1. Si |1 ´ x| “ |1 ` x|, alors |1 ´ x|2 “ |1 ` x|2, c’est-à-dire p1 ´ xq2 “ p1 ` xq2.

Comme p1 ` xq2 ´ p1 ´ xq2 “ p1 ` 2x` x2q ´ p1 ´ 2x` x2q “ 4x, on en déduit que x “ 0 .

2. a. Comme f vérifie (‹), on a |fp0q ` fp0q| “ |0 ` 0|, ce qui donne 2|fp0q| “ 0. Par conséquent, fp0q “ 0 .

b. Soit x P R. La relation (‹) en choisissant y “ 0 donne alors

|fpxq ` fp0q| “ |x|, donc |fpxq| “ |x|, ce qui entraîne fpxq “ x ou fpxq “ ´x.

On a donc bien : @x P R, pfpxq “ x ou fpxq “ ´xq .

c. On raisonne par l’absurde, et on suppose qu’il existe x P R tel que fpxq ‰ x. D’après la question précédente,
on a alors fpxq “ ´x. Ainsi, la relation (‹) (où l’on choisit cette fois y “ 1), donne |fpxq ` fp1q| “ |x ` 1|.
Comme on a aussi |fpxq ` fp1q| “ | ´ x` 1|, on en déduit alors que |1 ´ x| “ |x` 1|.
Par la question 1, on en déduit alors que x “ 0. Par conséquent, on a fpxq “ x, ce qui est une contradiction.
On a ainsi prouvé :

@x P R, fpxq “ x .

d. On introduit la fonction g “ ´f . On a alors gp1q “ ´fp1q “ 1. Par ailleurs, on remarque que g vérifie (‹).
D’après la question précédente, on a alors : @x P R, gpxq “ x, c’est-à-dire

@x P R, fpxq “ ´x

N.B. : on pouvait aussi bien sûr procéder comme dans la question précédente.
e. Comme on a vu que fp1q P t´1, 1u, on déduit des deux questions précédentes que f P tf1, f2u, où f1 : x ÞÑ x

et f2 : x ÞÑ ´x.

3. Comme dans la question précédente, on note f1 : x ÞÑ x et f2 : x ÞÑ ´x. Pour tous x, y,R, on a

|f1pxq ` f1pyq| “ |x` y|, et |f2pxq ` f2pyq| “ | ´ x´ y| “ |x` y|.
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Par conséquent, les fonctions f1 et f2 vérifient (‹).

On a donc montré que f1 et f2 sont les seules fonctions de R dans R vérifiant (‹) .

Exercice 3 – Inégalité de Cauchy-Schwarz
Cet exercice vise à obtenir une nouvelle preuve de l’inégalité de Cauchy-Schwarz : pour un entier n P N‹ fixé, on
souhaite démontrer que pour tous a1, . . . , an, b1, . . . , bn P R on a

˜

n
ÿ

k“1

akbk

¸2

ď

˜

n
ÿ

k“1

a2k

¸

ˆ

˜

n
ÿ

k“1

b2k

¸

.

1. Démontrer l’inégalité dans le cas où
n
ř

k“1

a2k “ 0.

2. On suppose que
n
ř

k“1

a2k ‰ 0. On considère le polynôme du second degré en X défini par :

P pXq “

n
ÿ

k“1

pakX ` bkq
2
.

a. Écrire P pXq sous la forme AX2 `BX ` C où A,B,C P R.
b. Justifier que le discriminant du polynôme P pXq est négatif.
c. Conclure.

1. On suppose que a21 ` . . .` a2n “ 0. Comme a21, . . . , a2n sont positifs, ceci entraîne que pour tout k P J1, nK, a2k “ 0 et
donc ak “ 0. Ainsi, le membre de gauche et le membre de droite sont nuls, l’inégalité est vérifiée.

2. a. On a

P pXq “

n
ÿ

k“1

a2kX
2

` 2akbkX ` b2k “

˜

n
ÿ

k“1

a2k

¸

X2
` 2

˜

n
ÿ

k“1

akbk

¸

X `

˜

n
ÿ

k“1

b2k

¸

,

d’où l’écriture recherchée avec A “

ˆ

n
ř

k“1

a2k

˙

, B “ 2

ˆ

n
ř

k“1

akbk

˙

, et C “

ˆ

n
ř

k“1

b2k

˙

.

b. Pour tout x P R, on a P pxq ě 0. Comme la fonction x ÞÑ P pxq est de signe constant, le polynôme du second
degré P a un discriminant négatif.

c. Par la question précédente, on a B2 ´ 4AC ď 0, c’est-à-dire :

4

˜

n
ÿ

k“1

akbk

¸2

´ 4

˜

n
ÿ

k“1

a2k

¸ ˜

n
ÿ

k“1

b2k

¸

ď 0, donc

˜

n
ÿ

k“1

akbk

¸2

ď

˜

n
ÿ

k“1

a2k

¸ ˜

n
ÿ

k“1

b2k

¸

.

Exercice 4 – Autour de la suite de Fibonacci
On considère la suite punqnPN définie par récurrence par :

#

u0 “ 0, u1 “ 1,

@n P N, un`2 “ un ` un`1

Suite de Fibonacci et nombre d’or

1. Montrer par récurrence double que pour tout entier n ě 5, un ě n.
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2. En déduire lim
nÑ`8

un.

3. Montrer que l’équation
x2 “ x` 1 (1)

admet deux solutions réelles, notées φ et ψ, avec φ P R` et ψ P R´. On explicitera φ et ψ.
On appelle φ le nombre d’or.

4. Montrer que ψ “ ´ 1
φ .

5. Montrer par récurrence double :

@n P N, un “
1

?
5

pφn ´ ψnq “
1

?
5

ˆ

φn ´

ˆ

´
1

φ

˙n˙

.

6. En déduire que lim
nÑ`8

un`1

un
“ φ.

Ce dernier résultat fournit un moyen d’approcher le nombre d’or par des rationnels.

Propriétés de la suite de Fibonacci

On montre ici des propriétés indépendantes de la suite de Fibonacci.

7. Soit n P N‹. Pour tout k P J0, nK, exprimer uk en fonction de uk`2 et uk`1, et en déduire une nouvelle expression
de la somme

n
ÿ

k“0

uk,

puis la calculer (on pourra effectuer le changement d’indice ℓ “ k ` 1).

8. Montrer à l’aide d’une récurrence double : @n P N‹, un`1 “
n
ř

k“0

`

n´k
k

˘

.

Théorème de Zeckendorf

On souhaite montrer le théorème suivant.
Théorème de Zeckendorf. Tout entier N P N‹ s’écrit comme la somme de termes de la suite punqně2

distincts non consécutifs. De plus, à ordre des termes dans la somme près, cette décomposition est unique.

9. Montrer que la suite punqně2 est strictement croissante.
10. Montrer que pour tout k P N‹, si N P N‹ s’écrit

N “ un1
` . . .` unk

avec n1, . . . , nk P J2,`8J et ni`1 ą ni ` 1 pour tout i P J1, k ´ 1K, alors N ă unk`1.
On pourra raisonner par récurrence sur k.

Pour tout N P N‹, on pourra utiliser sans démonstration l’existence d’un plus grand entier M tel que uM ď N .

11. Déduire de la question 10 que si un entier N P N‹ est la somme de termes de la suite punqně2 distincts et non
consécutifs, alors uM est un des termes de la somme, où M est le plus grand entier tel que uM ď N .

12. Montrer l’existence : tout entier N P N‹ s’écrit comme la somme de termes de la suite punqně2 distincts non
consécutifs.
On pourra raisonner par récurrence forte.

13. Montrer l’unicité (à ordre des termes près) de la décomposition de tout entier N P N‹ en somme de termes de
la suite punqně2 distincts non consécutifs.
On pourra raisonner à nouveau par récurrence forte.

1. Montrons par récurrence double que pour tout n P N tel que n ě 5, la proposition Ppnq : “un ě n” est vraie.
– On a u5 “ 5 ě 5 et u6 “ 8 ě 6, donc Pp5q et Pp6q sont vérifiées.
– Soit n un entier tel que n ě 5. On suppose que un ě n et un`1 ě n`1, et on souhaite montrer que un`2 ě n`2.

On a
un`2 “ un ` un`1 ě n` pn` 1q “ 2n` 1 ě n` 2

car 2n` 1 ´ pn` 2q “ n´ 1 ě 0. Ainsi, Ppn` 2q est vraie.
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Le principe de récurrence double assure alors : @n ě 5, un ě n.

2. Comme lim
nÑ`8

“ `8, on déduit de la question précédente et du théorème de comparaison que lim
nÑ`8

un “ `8 .

3. Les solutions de l’équation x2 “ x ` 1 sont les racines du polynôme du second degré P pXq “ X2 ´ X ´ 1. Le
polynôme P a pour discriminant 5, et admet donc deux racines réelles a, données par

φ “
1 `

?
5

2
et ψ “

1 ´
?
5

2
.

Par stricte croissance de la fonction racine carrée, on a
?
5 ą

?
4 “ 2. Par conséquent, 1 ´

?
5 ă 1 ´ 2 “ ´1, donc

ψ ă 0. Ainsi,

l’équation x2 “ x` 1 admet une unique solution réelle positive, qui est φ “ 1`
?
5

2
.

4. On a :

ψ “
1 ´

?
5

2
“

p1 ´
?
5qp1 `

?
5q

2p1 `
?
5q

“
´4

2p1 `
?
5q

“
´2

1 `
?
5
, donc on a bien ψ “ ´

1

φ
.

N.B. : on pouvait aussi remarquer que le produit des racines du polynôme X2 ´X´1 vaut ´1
1

“ ´1, donc φψ “ ´1.

5. Montrons par récurrence double que pour tout n P N, la proposition Ppnq : un “ 1?
5

pφn ´ ψnq est vraie.

– Si n “ 0, on a 1?
5

pφn ´ ψnq “ 0, donc Pp0q est vraie.

Si n “ 1, on a 1?
5

pφn ´ ψnq “ 1?
5

pφ´ ψq “ 1?
5

´

1`
?
5

2
´ 1`

?
5

2

¯

“ 1, donc Pp1q est vraie.

– Soit n P N. On suppose que Ppnq et Ppn` 1q sont vraies. Montrons que Ppn` 2q est vraie :

un`2 “ un ` un`1 “
1

?
5

`

φn
´ ψn

` φn`1
´ ψn`1

˘

“
1

?
5

pφn
p1 ` φq ´ ψn

p1 ` ψqq

“
1

?
5

`

φn`2
´ ψn`2

˘

car, φ et ψ étant solutions de x2 “ x` 1, on a 1 ` φ “ φ2 et 1 ` ψ “ ψ2. Ainsi, Ppn` 2q est vraie.

On a donc bien montré que pour tout n P N, un “ 1?
5

pφn ´ ψnq .

6. D’après la question précédente, on a pour tout n P N,

un`1

un
“

φn`1 ´

´

´ 1
φ

¯n`1

φn ´

´

´ 1
φ

¯n “
φn`1 ´

p´1qn`1

φn`1

φn ´
p´1qn

φn

“
φn`1

´

1 ´
p´1qn`1

φ2n`2

¯

φn
´

1 ´
p´1qn

φ2n

¯ “ φ
1 ´

p´1qn`1

φ2n`2

1 ´
p´1qn

φ2n

.

Comme φ ą 1, on a φ2 ą 1, donc lim
nÑ`8

φ2n “ lim
nÑ`8

pφ2q
n

“ `8, donc comme pour tout n P N,

´
1

φ2n
ď

p´1qn

φ2n
ď

1

φ2n
,

le théorème d’encadrement entraîne que lim
nÑ`8

p´1qn

φ2n “ 0. De même, lim
nÑ`8

p´1qn`1

φ2n`2 “ 0. On en déduit alors :

lim
nÑ`8

un`1

un
“ φ .

7. On a
n

ÿ

k“0

uk “

n
ÿ

k“0

uk`2 ´ uk`1 “

n`1
ÿ

ℓ“1

uℓ`1 ´ uℓ,

en ayant recours au changement de variable ℓ “ k ` 1 dans la dernière somme. Par télescopage, on a alors

n
ÿ

k“0

uk “ un`2 ´ u1 “ un`2 ´ 1 .

8. Montrons par récurrence double que pour tout n P N‹, on a Ppnq : un`1 “
n
ř

k“0

`

n´k
k

˘

.
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– Si n “ 1, on a
n
ř

k“0

`

n´k
k

˘

“
`

1
0

˘

`
`

0
1

˘

“ 1 “ u2, donc Pp1q est vraie.

Si n “ 2, on a
n
ř

k“0

`

n´k
k

˘

“
`

2
0

˘

`
`

1
1

˘

`
`

0
2

˘

“ 2 “ u3, donc Pp2q est vraie.

– Soit n P N. On suppose que Ppnq et Ppn` 1q sont vraies. Montrons Ppn` 2q :

un`3 “ un`2 ` un`1 “

n`1
ÿ

k“0

˜

n` 1 ´ k

k

¸

`

n
ÿ

k“0

˜

n´ k

k

¸

.

Or, avec la changement d’indice ℓ “ k`1, on a
n
ř

k“0

`

n´k
k

˘

“
n`1
ř

ℓ“1

`

n´pℓ´1q

ℓ´1

˘

“
n`1
ř

ℓ“0

`

n`1´ℓ
ℓ´1

˘

, car
`

n`1
´1

˘

“ 0. Ainsi,

un`3 “

n`1
ÿ

k“0

˜

n` 1 ´ k

k

¸

`

n`1
ÿ

k“0

˜

n` 1 ´ k

k ´ 1

¸

“

n`1
ÿ

k“0

˜

n` 2 ´ k

k

¸

car, par la formule de Pascal,
`

n`1´k
k

˘

`
`

n`1´k
k´1

˘

“
`

n`2´k
k

˘

pour tout entier k. Ainsi, Ppn` 2q est vraie.

On a donc bien montré que pour tout n P N, un`1 “
n
ř

k“0

`

n´k
k

˘

.

9. Si n est un entier tel que n ě 2, alors on a :

un`1 “ un´1 ` un, donc un`1 ´ un “ un´1 ě n´ 1 ě 1

d’après la question 1. Par conséquent, on a un`1 ´un ą 0. On en déduit alors que punqně2 est strictement croissante.

10. On raisonne par récurrence sur k.

– Si k “ 1 : on suppose que N est de la forme N “ un1 , on a alors N ă un1`1 par stricte croissance de la suite
punqně2.

– Soit k P N‹. On suppose le résultat vrai au rang k´1. Si N s’écrit N “ un1 `. . .`unk avec n1, . . . , nk P J2,`8J
et ni`1 ą ni ` 1 pour tout i P J1, k ´ 1K, alors par hypothèse de récurrence,

un1 ` . . . ` unk´1 ă unk´1`1.

On a nk ą nk´1 ` 1, donc nk´1 ă nk ´ 1, et nk´1 ` 1 ď nk ´ 1. Ainsi, unk´1`1 ď unk´1 par croissance de la
suite punqn, et

N “ un1 ` . . . ` unk´1 ` unk ă unk´1`1 ` unk ď unk´1 ` unk “ unk`1.

On a donc N ă unk`1, et la propriété est vraie au rang k.

On a donc bien montré que la propriété est vraie pour tout k P N .

11. Soit N P N‹. On suppose que N s’écrit
N “ un1 ` . . . ` unk ,

avec n1, . . . , nk P N et ni`1 ą ni`1 pour tout i P J1, k´1K. On remarque que pour tout i P J1, kK, on a nécessairement
uni ď N , donc ni ď M .
On raisonne par l’absurde et on suppose de plus que le terme uM ne figure pas dans la décomposition ci-dessus.
Alors, pour tout i P J1, kK, ni ‰ M , ce qui entraîne ni ă M . En particulier, on a nk ` 1 ď M . Par conséquent, la
question précédente donne

N “ un1 ` . . . ` unk ă unk`1 ď uM ď N,

donc N ă N , et il y a contradiction. On a donc montré : il existe i P J1, kK tel que uni “ uM .

12. Montrons par récurrence forte sur N .
– On a 1 “ u2, donc la propriété est vraie au rang 1.
– Soit N P N‹. On suppose que la propriété est vraie aux rangs 1, . . . , N ´ 1, i.e. tous les entiers 1, . . . , N ´ 1

s’écrivent comme la somme de termes de la suite punqně2 distincts non consécutifs. Montrons la propriété au
rang N .
Comme ci-dessus, on note M le plus grand entier tel que uM ď N . Si N “ uM , le propriété est démontrée.
Sinon, comme uM ě 1, on a N ´ uM P J1, N ´ 1K. Ainsi, par hypothèse de récurrence, N ´ uM s’écrit

N ´ uM “ un1 ` . . . ` unk
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avec n1, . . . , nk P J2,`8J et ni`1 ą ni ` 1 pour tout i P J1, k ´ 1K. Par conséquent,

N “ un1 ` . . . ` unk ` uM .

Il reste à montrer que M ą nk `1, et on aura bien montré la propriété au rang N . Supposons que M ď nk `1,
i.e. nk ě M ´ 1. Par croissance de la suite de Fibonacci, on a alors unk ě uM´1. Ceci entraîne que

N ě unk ` uM ě uM´1 ` uM “ uM`1.

Finalement, N ě uM`1 et il y a contradiction, car M est le plus grand entier tel que uM ď N .

Ainsi, tout entier N P N‹ s’écrit comme la somme de termes de la suite punqně2 distincts non consécutifs .

13. Montrons par récurrence forte que pour tout N P N‹, l’écriture N “ un1 ` . . . ` unk avec n1, . . . , nk P J2,`8J et
ni`1 ą ni ` 1 pour tout i P J1, k ´ 1K est unique.

– Si N “ 1 : on a N “ u2 et cette écriture est unique car pour tout entier n ą 2, on a un ą 1.
– Soit N P N‹. On suppose le résultat vrai pour les entiers 1, . . . , N ´ 1. Par la question 11., on sait que uM

figure dans la décomposition de N , où M est le plus grand entier tel que uM ď N .
Si N “ uM , l’écriture est unique car les termes de la suite punqně2 sont strictement positifs.
Sinon, comme N ´ uM P J1, N ´ 1, l’hypothèse de récurrence entraîne que l’écriture de N ´ uM comme
somme de termes de punqě2 distincts non consécutifs est unique, ce qui donne l’unicité de l’écriture de N .

Ainsi, l’écriture de tout N P N‹ comme somme de termes de la suite punqně2 distincts non consécutifs est unique .

a. On peut alternativement trouver directement les solutions en ayant recours à la forme canonique :

x2 ´ x ´ 1 “ 0 ô px ´ 1
2

q2 ´ 5
4

“ 0 ô px ´ 1
2

q2 “ 5
4

ô x ´ 1
2

P
!

´
?
5
2
,

?
5
2

)

.

‹ ‹ ‹
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