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Exercice 1. Soit m P R. Résoudre le système suivant en discutant suivant la valeur de m.
$

&

%

x ´my `m2z “ m
mx ´m2y `mz “ 1
mx `y ´m2z “ 1

On note pS q le système. Les systèmes suivants sont équivalents à pS q :
$

&

%

x ´my `m2z “ m
pm ´ m3qz “ 1 ´ m2

p1 ` m2qy ´pm2 ` m3qz “ 1 ´ m2

$

&

%

x ´my `m2z “ m
p1 ` m2qy ´m2p1 ` mqz “ 1 ´ m2

mp1 ´ m2qz “ 1 ´ m2

– Si m R t´1, 0, 1u, le système admet une unique solution.
ˆ

m

1 ´ m2
,

1 ` m

1 ´ m2
,

1

m

˙

.

– Si m “ 0, il n’y a pas de solution.
– Si m “ ´1, le système équivaut à

"

x ` y ` z “ ´1
´x ` y ´ z “ 1

Les solutions sont tp´z ´ 1, 0, zq, z P Ru.

Exercice 2. Sous-groupes de R. On souhaite montrer que si G est un sous-groupe de pR,`q, alors :
– soit G est de la forme aZ avec a P R`,
– soit G est dense dans R.

Dans toute la suite, on fixe un sous-groupe G de R différent de t0u.

1. Soit a P R. Montrer que aZ “ tka, k P Zu est un sous-groupe de R.
2. Justifier que l’ensemble G X R‹

` admet une borne inférieure a P R`.
3. Dans cette question, on suppose a ą 0.

a. Dans cette question, nous allons montrer que a P G. On raisonne par l’absurde, et on suppose que a R G.
i. Justifier qu’il existe b, c P G X R‹

` tels que a ă b ă c ă 2a.
ii. Justifier que 0 ă c ´ b ă a, et conclure à une contradiction.

b. Montrer que aZ Ă G.
c. Nous cherchons à montrer l’autre inclusion : G Ă aZ. On considère x P G, et on pose n “

X

x
a

\

.
i. Montrer que 0 ď x ´ na ă a.

ii. En déduire que x “ na et conclure.
4. Dans cette question, on suppose a “ 0.

a. Fixons x, y P R tels que x ă y.
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i. Justifier qu’il existe g P G X R‹
` tel que 0 ă g ă y ´ x.

ii. Posons n “

Y

x
g

]

` 1. Montrer que ng Psx, yr.

b. Déduire de ce qui précède que si a “ 0 alors G est dense dans R.

On a donc montré : – si a ą 0, alors G “ aZ,
– si a “ 0, alors G est dense dans R.

5. Application. On note G “ Z `
?
2Z “ ta ` b

?
2 | a, b P Zu.

a. Montrer que G est un sous-groupe de pR,`q.
b. En utilisant le résultat prouvé ci-dessus, montrer que G est dense dans R.

1. aZ est non vide car contient 0 “ 0a.
Soient x, y P aZ. Il existe k, k1 P Z tels que x “ ka et y “ k1a. Alors, x ´ y “

`

k ´ k1
˘

a P aZ car k ´ k1 P Z. Ainsi,
aZ est stable par différence.

2. Par hypothèse, il existe x P G non nul. Ainsi, ´x P G. Comme x ą 0 ou ´x ą 0 on en déduit que G X R‹
` est non

vide.
Par ailleurs, G X R‹

` est minoré par 0. On en déduit donc que G X R‹
` admet une borne inférieure.

3. a. i. Comme 2a ą a ce n’est pas un minorant de GXR‹
` donc il existe c P GXR‹

` tel que c ă 2a. D’autre part
a est un minorant de G X R‹

` donc a ď c et a R G X R‹
` donc a ă c.

De même, comme c ą a ce n’est pas un minorant de G X R‹
` donc il existe b P G X R‹

` tel que a ă b ă c.
ii. On en déduit 0 ă c ´ b ă 2a ´ b, puis comme a ă b, on a ´b ă ´a, et c ´ b ă 2a ´ a “ a.

On a c ´ b P G car G stable par différence et c ´ b P R‹
` donc c ´ b P G X R‹

`. Comme c ´ b ă a, ceci
contredit le fait que a “ inf G X R‹

`. On en déduit que a P G.
b. C’est du cours : comme G est un groupe et a P G, on a na P G pour tout n P Z, ce qui donne aZ Ă G.
c. i. Par définition de la partie entière, n ď x

a
ă n ` 1 d’où an ď x ă na ` a puis 0 ď x ´ na ă a.

ii. On a x P G et na P G donc x ´ na P G. Par l’absurde, si x ´ na ą 0 alors x ´ na P G X R‹
` or a minorant

de G X R‹
` d’où une contradiction. Ainsi, x ´ na “ 0.

On a ainsi montré que G Ă aZ, ce qui donne G “ aZ.
4. a. i. Comme précédemment, comme y ´ x ą 0 ce n’est pas un minorant de G X R‹

` donc il existe g P G X R‹
`

tel que 0 ă g ă y ´ x.
ii. Par définition de la partie entière on a x

g
ă n ď x

g
` 1 d’où x ă ng ă x ` g ă y.

b. Avec les notations de la question précédente, on a ng P GXsx, yr. On vient de montrer que tout intervalle de la
forme sx, y [ contient un élément de G c’est-à-dire que G est dense dans R.

5. a. On a 0 “ 0 ` 0
?
2 P G d’une part. D’autre part, si x, y P G, on peut noter x “ a ` b

?
2 et y “ c ` d

?
2, donc

x ´ y “ a ´ c ` pb ´ dq
?
2 P G.

b. On raisonne par l’absurde et on suppose que G n’est pas dense dans R. D’après ce qui précède, il existe alors
a P R‹ tel que G “ aZ.
On montre sans difficulté que Z`

?
2Z est un sous-groupe de R. Par l’absurde, on suppose qu’il existe a P R`tel

que Z `
?
2Z “ aZ. Nécessairement, a ‰ 0 car Z `

?
2Z ‰ t0u. Alors, 1 “ 1 ` 0

?
2 “ qa avec q P Zpq ‰ 0q et?

2 “ 0 ` 1
?
2 “ pa avec p P Z. On obtient

?
2 “ pa

qa
“ p

q
P Q. Ceci est en contradiction avec le fait que

?
2 est

irrationnel. Ainsi, Z `
?
2Z n’est pas de la forme aZ donc est dense dans R.

Exercice 3. Une autre preuve de Bolzano-Weierstrass. Soit punqnPN une suite réelle. On pose

A “ tn P N, @k ą n, uk ă unu.

1. On suppose que A est infini. Montrer que punqnPN possède une sous-suite décroissante.
2. On suppose que A est fini. Construire une sous-suite croissante de punqnPN.
3. En déduire que toute suite réelle bornée possède une sous-suite convergente.
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1. – On pose φp0q “ minA. Ce minimum existe car A est infini donc non vide.
– Soit n P N. On suppose φpnq construit. L’ensemble tm ą φpnq, @k ą m, uk ă umu est non vide (sinon,

A Ă J0, φpnqK, et n’est donc pas infini). On peut alors poser φpn ` 1q “ mintm ą φpnq, @k ą m, uk ă umu.
On a alors φpn ` 1q ą φpnq, et uφpn`1q ă uφpnq.

On a donc construit une sous-suite décroissante de punqnPN.
2. Comme A est une partie finie de N, on peut considérer son maximum N .

– On pose φp0q “ N ` 1.
– Soit n P N. On suppose φpnq construit avec φpnq ą N . Comme φpnq R A, il existe k ą φpnq tel que uk ě uφpnq.

On pose alors φpn ` 1q “ k, de sorte que φpn ` 1q ą φpnq et uφpn`1q ě uφpnq.
On a alors construit une sous-suite puφpnqq

nPN, qui est croissante.
3. Dans les deux cas ci-dessus, punqnPN possède une sous-suite monotone. Comme punqnPN est bornée, la sous-suite l’est

aussi, et est donc convergente.

Exercice 4. On considère la fonction f : R Ñ R définie par :

f : x ÞÑ

"

0 si x R Q ou x “ 0,
1
q sinon, où x “

p
q avec pp, qq P Z ˆ N‹ et p ^ q “ 1.

Déterminer les points de continuité de f .

– Si x P Q‹, alors fpxq ­“ 0, or par densité de RzQ dans R, on sait qu’il existe une suite pxnqnPN telle que xn ÝÑ
nÑ`8

x.
Comme fpxnq “ 0 pour tout n P N, on a fpxnq ÝÑ

nÑ`8
0 ­“ fpxq, donc f n’est pas continue en x.

– Si x P RzQ ou x “ 0, on considère une suite pxnqnPN telle que xn ÝÑ
nÑ`8

x. Supposons que fpxnq ÝÑ{
nÑ`8

0.

Ainsi, il existe ε ą 0 tel que @N P N, Dn ą N, |fpxnq| ą ε. On peut donc construire par récurrence une sous-suite
pxφpnqqnPN telle que |fpxφpnqq| ą ε pour tout n P N. Ceci entraîne que pour tout n P N, xφpnq P Q‹. On peut donc
écrire xφpnq “ pn

qn
où ppn, qnq P Z ˆ N‹ et pn ^ qn “ 1, ce qui implique que fpxφpnqq “ 1

qn
. Ainsi, |qn| ă 1

ε
.

Nous avons ainsi, montré que pqnqnPN est bornée, donc le théorème de Bolzano-Weierstrass assure l’existence d’une
sous-suite pqψpnqq

nPN qui converge. En tant que suite d’entiers, elle converge vers un entier q P N‹ (et stationne).
Par conséquent,

pψpnq “
pψpnq

qψpnq

qψpnq ÝÑ
nÑ`8

xq.

De même, xq est limite d’une suite d’entiers, c’est donc un entier, noté p. On a alors x “ p
q
, ce qui est une contradiction

si x P Q‹.
Si x “ 0, alors ppψpnqq

nPN stationne en 0 car c’est une suite d’entiers qui a une limite nulle. Ainsi, à partir d’un
certain rang, fpxψpnqq “ fp0q “ 0, et il y a contradiction.

Finalement, la fonction f est discontinue en tout point de Q‹, et continue en tout autre point.
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