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DM 5

Exercice 1. Pour tout entier n ⩾ 3, on note

fn : R⋆+ → R
x 7→ x − n ln x

1. a. Pour tout n ∈ N, montrer que l’équation fn(x) = 0 admet exactement deux solutions, qu’on notera un et vn,
avec un < vn. Vérifier que

∀n ⩾ 3, 0 < un < n < vn.

b. Donner la limite de la suite (vn)n∈N.

2. a. Montrer que pour tout n ⩾ 3, 1 < un < e.
b. Pour tout n ⩾ 3, déterminer le signe de fn(un+1), et en déduire le sens de variation de (un)n⩾3.

c. Montrer que (un)n⩾3 est convergente, puis établir que lim
n→+∞

un = 1.

1. a. La fonction fn est dérivable sur R⋆+, et pour tout x ∈ R⋆+, on a f ′n(x) = 1− n
x
.

Le signe de fn sur R⋆+ donne la stricte décroissance de fn sur ]0, n] et la stricte croissance de fn sur [n,+∞[. Ainsi :

– Comme fn est continue et strictement décroissante sur ]0, n[, on en déduit qu’elle définit une bijection de
]0, n[ sur son ensemble image J1 =]n(1 − ln n),+∞[. Comme 0 ∈ J1, 0 admet un unique antécédent un par
fn dans ]0, n[.

– Comme fn est continue et strictement croissante sur ]n,+∞[, on en déduit qu’elle définit une bijection de
]n,+∞[ sur son ensemble image J2. On a

fn(x) = x

(
1− n ln x

x

)
−→
x→+∞

+∞,

donc J2 =]n(1− ln n),+∞[. Comme 0 ∈ J2, 0 admet un unique antécédent vn par fn dans ]n,+∞[.
On a donc bien 0 < un < n < vn pour tout n ⩾ 3.

b. Comme pour tout n ⩾ 3, vn > n, on déduit par majoration que vn −→
n→+∞

+∞.

2. a. Pour tout n ⩾ 3, on a fn(1) = 1 et fn(e) = e− n < 0, on déduit de

fn(1) > fn(un) > fn(e)

et de la stricte décroissance de fn que 1 < un < e.

b. On sait que un+1 = (n + 1) ln(un+1), donc

fn(un+1) = un+1 − n ln(un+1) = ln(un+1).

Comme un+1 > 1, on a ln(un+1) > 0, donc

fn((un+1) > 0 = fn(un).

La décroissance de fn sur ]0, n[ entraîne alors que un+1 < un. On a donc montré que (un)n∈N est décroissante.

c. Comme (un)n∈N est décroissante et minorée (par 1), elle converge vers une limite ℓ ⩾ 1. Supposons que ℓ > 1, on
a alors

n ln(un) −→
n→+∞

+∞, donc un −→
n→+∞

+∞,

car ln ℓ > 0, et un = n ln(un). Ceci est une contradiction. On en déduit que ℓ = 1.
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Exercice 2. Homographies de C
On rappelle que U désigne l’ensemble des nombres complexes de module 1 : U = {z ∈ C, |z | = 1}.
Si a, b, c, d ∈ C vérifient ad − bc 6= 0, on dit que l’application

f : C \ {z ∈ C, cz + d = 0} → C

z 7→
az + b

cz + d

est une homographie.

Un exemple

On introduit l’application
h : C \ {1} → C

z 7→
iz + i

−z + 1

1. Justifier que h est une homographie, et montrer que pour tout z ∈ U tel que z 6= 1, on a h(z) ∈ R.

2. Montrer que h est injective.

3. Déterminer les nombres complexes w ∈ C tels que l’équation h(z) = w ait au moins une solution. L’application h
est-elle surjective ? En déduire une partie F de C telle que h définisse une bijection de C \ {1} sur F .

Homographies conservant U

Dans cette partie, on cherche à déterminer toutes les homographies h de C telles que h est bien définie sur U, et :

∀z ∈ U, h(z) existe et h(z) ∈ U. (P)

On dit alors que h conserve U.

4. Préliminaire. Montrer que pour tous z, z ′ ∈ C, |z + z ′|2 = |z |2 + |z ′2|+ 2Re(zz̄ ′).

5. Deux types d’homographies conservant U.

a. Montrer que pour tout θ ∈ R, la fonction

h : z 7→
eiθ

z
(1)

définit une homographie qui vérifie la propriété (P). On dira alors que h est une homographie de type (1).

b. Montrer que pour tout α ∈ C tel que α 6∈ U et tout θ ∈ R, la fonction

h : z 7→ eiθ
z + α

ᾱz + 1
(2)

définit une homographie qui vérifie la propriété (P). On dira alors que h est une homographie de type (2).

On pourra (par exemple) utiliser la question 4.

6. On cherche à montrer dans cette question que toutes les homographies conservant U sont soit de type (1), soit de
type (2).

On considère a, b, c, d ∈ C tels que ad − bc 6= 0. On suppose que

h : z 7→
az + b

cz + d

est une homographie qui vérifie la propriété (P).

a. À l’aide de la question 4, montrer que pour tout θ ∈ R,

|a|2 + |b|2 + 2Re(ab̄eiθ) = |c |2 + |d |2 + 2Re(cd̄eiθ).

b. Soient u, v ∈ C. Montrer que :

si pour tout θ ∈ R, u + 2Re(veiθ) = 0, alors u = v = 0.

Déduire alors de la question précédente que |a|2 + |b|2 = |c |2 + |d |2 et que ab̄ = cd̄ .

c. Si a = 0, montrer que h est une homographie de type (1).
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d. On suppose désormais que a 6= 0. Montrer que

(|a|2 − |c |2)(|a|2 − |d |2) = 0.

e. Montrer que si |a| = |c |, alors ad − bc = 0. Qu’en déduire dans ce cas ?

f. Montrer que si |a| = |d |, alors h est une homographie de type (2), et conclure.

1. L’application h est de la forme de l’énoncé avec a = b = i, c = −1 et d = 1, donc ad − bc = 2i 6= 0, et h est bien une
homographie. Si z ∈ U et z 6= 1, on a

h(z) =
(iz + i)(−z̄ + 1)
(−z + 1)(−z̄ + 1) =

−izz̄ + i(z − z̄) + i
|1− z |2 =

−i|z |2 − 2 Im(z) + i
|1− z |2 = −2 Im(z)|1− z |2 ,

car |z | = 1. Ainsi, h(z) ∈ R.

2. Soient z, z ′ ∈ C \ {1}. On suppose que h(z) = h(z ′), c’est-à-dire

(iz + i)(−z ′ + 1) = (iz ′ + i)(−z + 1), ou encore − izz ′ + i(z − z ′) + i = −izz ′ + i(z ′ − z) + i.

On en déduit que 2i(z − z ′) = 0, donc z = z ′. La fonction h est alors injective.

3. Soit w ∈ C. Si z ∈ C \ {1}, on a

h(z) = w ⇔ (iz + i) = w(1− z) ⇔ z(i + w) = w − i.

Par conséquent, l’équation a une unique solution si w 6= −i, et n’a pas de solution sinon. On en déduit :

– que h n’est pas surjective car −i n’a pas d’ antécédent,

– que h est bijective de C \ {1} sur C \ {−i}.
4. On a : |z + z ′|2 = (z + z ′)(z̄ + z̄ ′) = zz̄ + zz̄ ′ + z̄z ′ + z ′z̄ ′ = |z |2 + zz̄ ′ + zz̄ ′ + |z ′|2 = |z |2 + |z ′2|+ 2Re(zz̄ ′).

5. a. L’application est de la forme de l’énoncé avec a = 0, b = eiθ, c = 1 et d = 0, donc ad − bc = −eiθ 6= 0, donc h
est bien une homographie.

Par ailleurs, si z ∈ U, on a z 6= 0 donc h(z) est bien défini, et |h(z)| = |eiθ |
|z | = 1.

b. L’application est de la forme de l’énoncé avec a = eiθ, b = αeiθ, c = ᾱ et d = 1, donc h est bien une homographie,
car ad − bc = eiθ(1− αᾱ) = eiθ(1− |α|2) 6= 0, du fait que |α| 6= 1.
Par ailleurs,

– si α = 0, l’application h est définie sur C donc sur U,

– si α 6= 0, alors h est définie sur C \ {− 1
ᾱ
} donc sur U car

∣∣− 1
ᾱ

∣∣ 6= 1 donc − 1
ᾱ
6∈ U.

Si z ∈ U, on a

|h(z)|2 = |eiθ| |z |
2 + |α|2 + 2Re(zᾱ)

|ᾱz |2 + 1 + 2Re(zᾱ)
=
1 + |α|2 + 2Re(zᾱ)

|ᾱ|2 + 1 + 2Re(zᾱ)
= 1,

car |z | = 1 et |ᾱ| = |α|.
N.B. : on pouvait aussi remarquer que comme |z̄ | = 1, on a |h(z)| = |z+α|

|ᾱz+1| |z̄ | =
|z+α|
|ᾱ+z̄ | = 1 car z + α = ᾱ+ z̄ .

6. a. Pour tout θ ∈ R, on a eiθ ∈ U, donc comme h vérifie (P), on a |aeiθ+b| = |ceiθ+d |, donc |aeiθ+b|2 = |ceiθ+d |2.
La question 4 donne alors :

|aeiθ|2 + |b|2 + 2Re(aeiθb̄) = |ceiθ|2 + |d |2 + 2Re(ceiθd̄)

d’où |a|2 + |b|2 + 2Re(ab̄eiθ) = |c |2 + |d |2 + 2Re(cd̄eiθ).

b. On suppose que pour tout θ ∈ R, u + 2Re(veiθ) = 0.

En choisissant θ = 0 et θ = π, puis θ = π
2

et θ = − π
2
, on obtient{

u + 2Re v = 0 (1)

u − 2Re v = 0 (2)
puis

{
u + 2Re(iv) = 0

u + 2Re(−iv) = 0 donc
{
u − 2 Im v = 0 (3)

u + 2 Im v = 0 (4)

En sommant (1) et (2), on déduit que Re v = 0. En sommant (3) et (4), on déduit que Im v = 0. Finalement,
v = 0, donc u = 0.

La question précédente donne : pour tout θ ∈ R, |a|2+ |b|2−(|c |2+ |d |2)+2Re((ab̄−cd̄)eiθ) = 0. En appliquant
ce qui précède à u = |a|2+ |b|2− (|c |2+ |d |2) et v = ab̄− cd̄ , on obtient u = v = 0, donc |a|2+ |b|2 = |c |2+ |d |2
et que ab̄ = cd̄ .
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c. Si a = 0, on a cd̄ = 0 d’après la question précédente. Comme ad − bc 6= 0, on a bc 6= 0, donc c 6= 0, ce qui
entraîne que d = 0. Finalement, h est de la forme

h : z 7→ b

cz

Comme |b|2 = |c |2, on a
∣∣ b
c

∣∣ = 1, donc b
c

s’écrit eiθ pour un réel θ ∈ R. Ainsi, h : z 7→ eiθ

z
, et h est de type (1).

d. On a (|a|2 − |c |2)(|a|2 − |d |2) = |a|4 − |ad |2 − |ca|2 + |cd |2.
Comme ab̄ = cd̄ , on a |ab|2 = |cd |2, donc

(|a|2 − |c |2)(|a|2 − |d |2) = |a|4 − |ad |2 − |ca|2 + |ab|2 = |a|2(|a|2 − |d |2 − |c |2 + |b|2) = 0

d’après la question 6b.

e. Si |a| = |c |, alors c+ 6= 0, et on a a
c
∈ U, donc il existe θ ∈ R tel que a = ceiθ. Comme ab̄ = cd̄ , on en déduit

que cb̄eiθ = cd̄ . Comme c 6= 0, on a b = deiθ. Ansi, ad − bc = ceiθd − deiθc = 0. On en déduit que dans ce cas
h n’est pas une homographie, donc ce cas est impossible.

f. Si |a| = |d |, alors comme ci-dessus il existe θ ∈ R tel que a
d
= eiθ. Alors, pour tout z ∈ C tel que cz + d 6= 0,

h(z) =
a

d

z + b
a

c
d
z + 1

= eiθ
z + b

a
c
d
z + 1

.

On pose α = b
a
. Comme ab̄ = cd̄ , on a alors c

d
= ab̄
dd̄
= ab̄
|d | . L’égalité a = |a|

ā
donne ensuite c

d
= |a|
|d |
b̄
ā
= b̄
ā
= ᾱ.

Par ailleurs, on déduit aussi de ab̄ = cd̄ que |b| = |c |, donc si α = b
a
∈ U, on a |a| = |b| = |c |, ce qui est impossible

d’après la question précédente. On a donc bien montré que l’homographie h est de type (2).
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