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Exercice 1. Soient f et g les applications définies par :

f : N → N
n 7→ 2n

g : N → N

n 7→

{
n
2 si n est pair,
n−1
2 si n est impair.

1. Les applications f et g sont-elles injectives, surjectives, bijectives ?

2. Expliciter les applications g ◦ f et f ◦ g. Sont-elles injectives, surjectives, bijectives ?

1. L’application f est injective : soient n,m ∈ N tels que f (n) = f (m), on a alors 2n = 2m, donc n = m.
En revanche, f n’est pas surjective : par exemple, 1 ∈ N n’a pas d’antécédent par f : si f (n) = 1, alors n = 1

2
, mais

1
2
6∈ N. Par conséquent, f n’est pas bijective.

L’application g n’est pas injective : par exemple g(0) = g(1) = 0. Par conséquent, g n’est pas bijective.
En revanche, g est surjective : si m ∈ N, on a g(2m) = m donc m a un antécédent par g.

2. On a g ◦ f : N → N
n 7→ n

, donc g ◦ f = IdN, et g ◦ f est bijective.

On a f ◦ g : N → N

n 7→
{
n si n est pair,

n − 1 si n est impair.

Ainsi, f ◦ g n’est pas injective (f ◦ g(0) = f ◦ g(1) = 0), ni surjective (1 n’a pas d’antécédent par f ◦ g).

Exercice 2. On introduit la fonction polynomiale :

P : z 7→
1

2i

(
(z + i)5 − (z − i)5

)
.

1. a. Résoudre sur C \ {i} l’équation
(
z + i

z − i

)5
= 1.

b. En déduire les solutions de l’équation P (z) = 0. On pensera à la technique de l’angle moitié.

2. a. En développant, montrer que pour tout z ∈ C, P (z) = 5z4 − 10z2 + 1.
b. Déterminer les racines de P par une autre méthode qu’en question 1.

3. On définit la fonction cotan : x 7→
cos x

sin x
sur R \ {kπ, k ∈ Z}.

a. Montrer que cotan π5 > 1.

b. Déduire des questions précédentes la valeur exacte de cotan π5 .

1. a. Soit z ∈ C \ {i}. On a
(
z+i
z−i
)5
= 1 si et seulement si z+i

z−i est racine 5-ème de l’unité. Ainsi,(
z + i

z − i

)5
= 1 ⇔ ∃k ∈ J0, 4K, z + i

z − i = e
2ikπ
5 ⇔ ∃k ∈ J0, 4K, z + i = (z − i)e 2ikπ5

⇔ ∃k ∈ J0, 4K, z (e 2ikπ5 − 1) = i(e 2ikπ5 + 1) .
On remarque que si k = 0, on ne peut pas avoir z

(
e
2ikπ
5 − 1

)
= i
(
e
2ikπ
5 + 1

)
. Finalement,

(
z + i

z − i

)5
= 1 ⇔ ∃k ∈ J1, 4K, z = i e 2ikπ5 + 1

e
2ikπ
5 − 1

.
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Ainsi, l’ensemble des solutions de l’équation est

{
i
e
2ikπ
5 + 1

e
2ikπ
5 − 1

, k ∈ J0, 4K}.

b. Pour k ∈ J1, 4K, on a

i
e
2ikπ
5 + 1

e
2ikπ
5 − 1

= i
e
ikπ
5

(
e
ikπ
5 + e−

ikπ
5

)
e
ikπ
5

(
e
ikπ
5 − e− ikπ5

) = i 2 cos kπ5
2i sin kπ

5

= cotan
kπ

5
.

Par ailleurs, si z ∈ C \ {i}, alors P (z) = 0 ⇔ (z + i)5 = (z − i)5 ⇔
(
z+i
z−i
)5
= 1. Comme de plus P (i) 6= 0,

les solutions de P (z) = 0 sont exactement les solutions de
(
z+i
z−i
)5
= 1, c’est-à-dire cotan π

5
, cotan 2π

5
, cotan 3π

5
,

cotan 4π
5

.

2. a. Par la formule du binôme de Newton, on a pour tout z ∈ C,

2iP (z) =

5∑
k=0

(
5

k

)
ikz5−k −

5∑
k=0

(
5

k

)
(−i)kz5−k =

5∑
k=0

(
5

k

)
z5−k ik

(
1− (−1)k

)
Donc P (z) = 1

2i

((
5
1

)
2iz4 +

(
5
3

)
2i3z2 +

(
5
5

)
2i5
)
= 5z4 − 10z2 + 1.

b. Les racines du polynôme Q(X) = 5X2−10X2+1 sont 1+ 2√
5

et 1− 2√
5
. Comme z est racine de P si et seulement

si z2 est racine de Q, on en déduit les 4 racines de P , qui sont réelles :

−

√
1 +

2√
5
, −

√
1− 2√

5
,

√
1− 2√

5
,

√
1 +

2√
5
.

3. a. Comme π
5
< π

4
, on a tan π

5
< tan π

4
= 1 par stricte croissance de la fonction tan sur [0, π

2
[. Par conséquent,

cotan π
5
> 1.

b. On sait que cotan π
5

est l’une des racines de P . Comme
√
1 + 2√

5
est l’unique racine supérieure à 1, on en déduit

que cotan π
5
=
√
1 + 2√

5
.

Exercice 3.

1. Trouver tous les couples (u, v) ∈ C2 tels que {
|u| = |v | = 1,
u + v = −1.

2. À l’aide de la question précédente, trouver tous les triplets (u, v , w) ∈ C3 tels que{
|u| = |v | = |w | = 1,
u + v + w = 0.

Que dire alors des points du plan d’affixes respectifs u, v , w ?

3. Soient k un entier qui n’est pas un multiple de 3 et θ, φ, ψ ∈ R et k tels que eiθ + eiφ + eiψ = 0. Calculer

ekiθ + ekiφ + ekiψ.

1. Analyse. Si (u, v) est solution du problème, on écrit u et v sous leur forme algébrique : u = x + iy et v = x ′ + iy ′. On
a alors x + x ′ = −1 et y + y ′ = 0, donc x ′ = −x − 1 et y ′ = −y . Par ailleurs, 1 = x2 + y 2 = (−x − 1)2 + (−y)2, ce qui
entraîne que x2 = (x + 1)2, donc 2x + 1 = 0, et x = − 1

2
.

Par conséquent, on a x ′ = −x − 1 = − 1
2
. Comme u est de module 1, on en déduit que y ∈

{
−
√
3
2
,
√
3
2

}
.

Finalement, (u, v) est alors l’un des deux couples (j, j2), (j2, j).

Synthèse. Réciproquement, les deux couples ci-dessus sont clairement solutions du problème.

2. Analyse. Si (u, v , w) est un triplet solution, alors u est non nul, et on a u
(
1 + v

u
+ w

u

)
= 0, donc v

u
+ w

u
= −1.

Comme par ailleurs v
u

et w
u

sont de module 1, on sait alors par la question 1 que
(
v
u
, w
u

)
∈ {(j, j2), (j2, j)}. Ainsi, on a

(u, v , w) = (u, ju, j2u), ou (u, v , w) = (u, j2u, ju).
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Synthèse. Réciproquement, tout triplet de la forme (u, ju, j2u), ou (u, j2u, ju) avec u ∈ U est solution, car 1+j+j2 = 0.

Interprétation géométrique. Si (u, v , w) est un triplet solution du problème, alors les points d’affixes respectives u, v , w
sont les sommets d’un triangle équilatéral inscrit dans le cercle trigonométrique.

3. D’après la question précédente, le triplet (eiθ, eiφ, eiψ) peut s’écrire sous la forme (u, ju, j2u), avec u ∈ U (quitte à
permuter). On a alors

ekiθ + ekiφ + ekiψ = uk + (ju)k + (j2u)k = uk
(
1 + jk + j2k

)
.

Or si k ≡ 1 [3], on peut écrire k = 3a + 1 avec a ∈ Z, donc jk = j3a+1 = (j3)
a
j = j, et j2k = (j3)

2a
j2 = j2, donc

ekiθ + ekiφ + ekiψ = uk(1 + j + j2) = 0.

De même, si k ≡ 2 [3], on a jk = j2 et j2k = j, donc on a aussi ekiθ + ekiφ + ekiψ = uk(1 + j2 + j) = 0.
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