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Chapitre 15

Dérivabilité

Dans ce chapitre, I désigne un intervalle de R non réduit à un point, ou plus généralement une union d’intervalles non
réduits à un point 1, et a désigne un point de I.

I Dérivée

On appelle taux d’accroissement de f en a la fonction τa : Iztau Ñ R définie
par :

τa : x ÞÑ
fpxq ´ fpaq

x ´ a
.

Graphiquement, τapxq est le coefficient directeur de la droite passant par les
points Mpaq et Mpxq de coordonnées respectives pa, fpaqq et px, fpxqq. a x

Mpaq

Mpxq

Définition - Taux d’accroissement

On dit que f est dérivable en a si son taux d’accroissement en a τa admet une limite finie lorsque x Ñ a. Dans
ce cas, on note cette limite f 1paq, et on l’appelle nombre dérivé de f en a.

Si f est dérivable en tout point de I, on dit que f est dérivable sur I, et on appelle dérivée de f sur I la fonction
f : x ÞÑ f 1pxq définie sur I. On note DpI,Rq l’ensemble des fonctions dérivables sur I.

Définition - Dérivabilité en un point, sur un ensemble

Remarque. Du fait que a ` h ÝÑ
hÑ0

a, on obtient par composition de limite que f est dérivable en a si :

lim
hÑ0

fpa ` hq ´ fpaq

h
existe et est finie.

La notation fpxq1 est proscrite : fpxq est un nombre réel, et non pas une fonction. Lorsqu’on voudra faire apparaître
la variable de dérivation, on pourra en revanche écrire d

dx pfpxqq au lieu de f 1.

On dit que f est dérivable à gauche (resp. à droite) en a si la fonction τa admet une limite à gauche (resp. à
droite) en a. Dans ce cas, on note f 1

gpaq
`

resp. f 1
dpaq

˘

cette limite.
La fonction f est dérivable en a si et seulement si f est dérivable à gauche et à droite en a, et f 1

gpaq “ f 1
dpaq.

Définition-théorème - Dérivabilité et dérivabilité à gauche, à droite

Démonstration. Il s’agit d’une simple application des résultats sur les limites.

Exemple. Si f : x ÞÑ |x|, on a fgp0q “ ´1 et f 1
dp0q “ 1, donc f n’est pas dérivable

en 0.

Remarque. Graphiquement, lorsque les dérivées à gauche et à droite existent,
f 1
gpaq et f 1

dpaq désignent les pentes respectives des tangentes à gauche et à droite à
la courbe de f .
Lorsque f 1

gpaq ­“ f 1
dpaq, ces pentes ne sont pas les mêmes, on parle de rupture de

pente en a.

Cf

a

Il s’agit bien de la limite de τa dans la définition, et non pas de f 1. Comme nous allons le revoir, il peut arriver
que f soit dérivable en a, mais que sa dérivée n’admette pas de limite en a.

1. On peut en fait définir plus généralement les notions dans une partie I de R telle que tout point a P I est d’accumulation : il existe
une suite pxnqnPN de Eztau telle que xn ÝÑ

nÑ`8
a
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La fonction f est dérivable en a si et seulement si elle admet un développement limité d’ordre 1 en a, i.e. il existe
ℓ P R et une fonction ε définie sur I telle que εpxq ÝÑ

xÑa
0 et pour tout x P I,

fpxq “ fpaq ` ℓpx ´ aq ` εpxqpx ´ aq. (1)

Dans ce cas, ℓ “ f 1paq. Le développement limité se récrit fpxq “ fpaq ` f 1paqpx ´ aq ` εpxqpx ´ aq.

Théorème - Dérivabilité et développement limité

Démonstration. Si f est dérivable en a, on considère la fonction

ε : x ÞÑ

"

fpxq´fpaq

x´a ´ f 1paq si x ­“ a

0 sinon

On a donc εpxq ÝÑ
xÑa

0 par dérivabilité en a, et pour tout x P I, fpxq “ fpaq ` f 1paqpx ´ aq ` εpxqpx ´ aq.

Par ailleurs, si f vérifie (1), alors pour tout x ­“ a, on a fpxq´fpaq

x´a “ ℓ ` εpxq ÝÑ
xÑa

ℓ, et f est dérivable en a.

Remarque. Il arrive fréquemment qu’on écrive le développement limité en changeant de variable, en posant x “ a`h.
On obtient :

fpa ` hq “ fpaq ` f 1paqh ` εphqh, où εphq ÝÑ
hÑ0

0.

Soit f une fonction dérivable en a. La droite d’équation y “ f 1paqpx ´ aq ` fpaq est appelée tangente à la courbe
de f en a.

Définition - Tangente à Cf en a

Remarques.

– Graphiquement, la tangente à la courbe de f en un point a est la droite de pente f 1paq passant par Mpaq.
– Si f admet une limite infinie en a, on dit que sa courbe admet une tangente verticale en a, d’équation x “ a.

Si f est dérivable en a P I, alors f est continue en a.
Théorème - Dérivabilité et continuité

Démonstration. Si f est dérivable en a, alors on sait que f admet un développement limité d’ordre 1 en a : fpxq “

fpaq ` f 1paqpx ´ aq ` εpxqpx ´ aq. Comme εpxq ÝÑ
xÑa

0, on a fpxq ÝÑ
xÑa

fpaq, et f est continue en a.

La réciproque est fausse. Par exemple, la fonction x ÞÑ
?
x est continue en 0, mais n’est pas dérivable en ce point.

(i) Si f, g P DpI,Rq et λ P R, alors les fonctions λf , f ` g, fg et, si g ne s’annule pas sur I, f
g , sont dérivables

sur I, et on a alors

pλfq1 “ λf 1, pf ` gq1 “ f 1 ` g1, pfgq1 “ f 1g ` fg1,

ˆ

f

g

˙1

“
f 1g ´ fg1

g2
.

Ainsi, DpI,Rq est stable par combinaison linéaire, par produit, et quotient lorsque le dénominateur ne
s’annule pas.

(ii) Si f P DpI,Rq, g P DpJ,Rq et fpIq Ă J , alors g ˝ f est dérivable sur I, et

pg ˝ fq1 “ pg1 ˝ fq ˆ f 1.

(iii) Si I est un intervalle et f P DpI,Rq est une bijection de I sur J et f 1 ne s’annule pas sur I, alors f´1 est
dérivable sur l’intervalle J , et

`

f´1
˘1

“
1

f 1 ˝ f´1
.

Théorème - Opérations sur les fonctions dérivables
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Démonstration.

(i) Les deux premiers points proviennent directement des liens déjà vus entre limite et opérations. Examinons le
troisième point : soit a P I, on a alors

pfgqpxq ´ pfgqpaq

x ´ a
“

fpxqgpxq ´ fpaqgpxq ` fpaqgpxq ´ fpaqgpaq

x ´ a
“ fpaq

gpxq ´ gpaq

x ´ a
` gpxq

fpxq ´ fpaq

x ´ a

ÝÑ
xÑa

f 1paqg1paq ` fpaqg1paq,

car f et g sont dérivables en a, et gpxq ÝÑ
xÑa

gpaq par continuité de g en a. Ensuite, si g ne s’annule pas, alors

1
gpxq

´ 1
gpaq

x ´ a
“

gpaq ´ gpxq

gpxqgpaqpx ´ aq
“ ´

gpxq ´ gpaq

x ´ a

1

gpxqgpaq
ÝÑ
xÑa

´
g1paq

gpaq2
.

On en déduit que 1
g est dérivable sur I, et

´

1
g

¯1

“ ´
g1

g2 .

On déduit alors de ce qui précède que f
g est dérivable, et

´

f
g

¯1

“ f 1 1
g ` f

´

´
g1

g2

¯

“
f 1g´fg1

g2 .

(ii) On peut écrire le développement limité gpyq “ gpfpaqq ` g1pfpaqqpy ´ fpaqq ` εpyqpy ´ fpaqq, où εpyq ÝÑ
yÑfpaq

0,
par dérivabilité de g en fpaq. Ainsi, pour x ­“ a, en choisissant y “ fpxq et en divisant par x ´ a,

gpfpxqq ´ gpfpaqq

x ´ a
“ g1pfpaqq

fpxq ´ fpaq

x ´ a
` εpfpxqq

fpxq ´ fpaq

x ´ a
ÝÑ
xÑa

g1pfpaqqf 1paq

car par composition de limite, εpfpxqq ÝÑ
xÑa

0 du fait que fpxq ÝÑ
xÑa

fpaq.

(iii) Soient b P J et a P I tel que fpaq “ b, c’est-à-dire f´1pbq “ a. Comme f 1paq ­“ 0, on a x´a
fpxq´fpaq

ÝÑ
xÑa

1
f 1paq

.

Par continuité de f´1, on a f´1pyq ÝÑ
yÑb

f´1pbq “ a donc par composition de limites,

f´1pyq ´ f´1pbq

y ´ b
ÝÑ
yÑb

1

f 1paq
“

1

f 1pf´1pbqq
, donc

`

f´1
˘1

pbq “
1

f 1pf´1pbqq
.

II Dérivées d’ordres supérieurs
1. Définition

Rappel On définit les dérivées successives d’une fonction f sur I, lorsqu’elles existent par récurrence : on note f p0q “ f ,
et pour n P N‹, si la fonction f pn´1q existe et est dérivable sur I, on dit que f est n fois dérivable sur I, et on note
f pnq “

`

f pn´1q
˘1.

On note DnpI,Rq l’ensemble des fonctions n fois dérivables de I dans R.

Exemples.

1. Soit n P N. La fonction exponentielle est n fois dérivable sur R et exppnq “ exp.
2. Soit p P N. Si n P N, la fonction g : x ÞÑ xp est n fois dérivable sur R, et

gpnq : x ÞÑ

$

&

%

p pp ´ 1q . . . pp ´ n ` 1qxp´n “
p!

pp ´ nq!
xp´n si n ď p,

0 si n ą p.

3. Pour tout n P N, la fonction inverse h : x ÞÑ 1
x est n fois dérivable sur R‹, et

@x P R‹, hpnqpxq “ p´1qn
n!

xn`1
.

4. On déduit du point précédent que si n P N, alors lnpnq
pxq “ p´1qn´1 pn ´ 1q!

xn
pour tout x P R‹

`.

‹ On dit que f est de classe C n sur I si f est n fois dérivable sur I et si f pnq est continue sur I. L’ensemble
des fonctions de classe C n sur I est noté C npI,Rq, ou encore C npIq.

Définition - Classe C n, classe C 8
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‹ On dit que f est de classe C 8 sur I si f est n fois dérivable sur I pour tout n P N. L’ensemble des fonctions
de classe C 8 sur I est noté C 8pI,Rq, ou encore C 8pIq.

Exemple. Les fonctions polynomiales, les fonctions exp, cos, sin, arctan sont de classe C 8 sur R.

Les espaces D1pI,Rq et C 1pI,Rq ne sont pas les mêmes : il existent des fonctions dérivables dont la dérivée n’est
pas continue. Par exemple, si on considère la fonction f définie sur R par

f : x ÞÑ

"

x2 sin 1
x si x ­“ 0,

0 si x “ 0

On constate que f est dérivable sur R : elle l’est sur R‹ et on a f 1pxq “ 2x sin 1
x ´ cos 1

x pour tout x P R‹, et en 0
car fpxq ´ fp0q

x
“ x sin

1

x
ÝÑ
xÑ0

0.

En revanche, f 1 n’a pas de limite en 0, donc elle n’est pas continue en 0.

2. Opérations sur C npI,Rq et C 8pI,Rq

Soit n P N. Si f, g P C npIq (resp. C 8pI,Rq) et λ, µ P R, alors

λf ` µg P C npI,Rq presp. C 8pIqq et pλf ` µgqpnq “ λf pnq ` µgpnq.

Ainsi, C npI,Rq et C 8pI,Rq sont stables par combinaison linéaire.

Théorème - Combinaison linéaire

Démonstration. Par récurrence aisée : exercice.

Le théorème suivant donne la dérivée nème d’un produit, et généralise le résultat bien connu de la dérivée d’un produit.

L’espace C npI,Rq est stable par produit : si f, g P C npIq, alors fg est de classe C n sur I. De plus,

pfgqpnq “

n
ÿ

k“0

ˆ

n

k

˙

f pkqgpn´kq “

n
ÿ

k“0

ˆ

n

k

˙

f pn´kqgpkq.

De même, C 8pIq est stable par produit.

Théorème - Produit : formule de Leibniz

Démonstration. La preuve se fait par récurrence et est très semblable à la preuve du binôme de Newton.Le cas où
n “ 0 est évident. Par ailleurs, si on fixe n P N et on suppose que le résultat est vrai au rang n et si f, g P C n`1pI,Rq,
alors

pfgqpn`1q “

n
ÿ

k“0

ˆ

n

k

˙

´

f pkqgpn´kq
¯1

“

n
ÿ

k“0

ˆ

n

k

˙

´

f pk`1qgpn´kq ` f pkqgpn´k`1q
¯

“

n`1
ÿ

k“1

ˆ

n

k ´ 1

˙

f pkqgpn´pk´1qq `

n
ÿ

k“0

ˆ

n

k

˙

f pkqgpn´k`1q

Par réindexation dans la première somme. En remarquant que les termes correspondant à k “ 0 dans la première
somme, et k “ n ` 1 dans la seconde sont nuls, on a

pfgqpn`1q “

n`1
ÿ

k“0

ˆ

n

k ´ 1

˙

f pkqgpn`1´kq `

n`1
ÿ

k“0

ˆ

n

k

˙

f pkqgpn`1´kq “

n`1
ÿ

k“0

ˆˆ

n

k ´ 1

˙

`

ˆ

n

k

˙˙

f pkqgpn`1´kq.

On conclut grâce à la formule de Pascal que le résultat est vrai au rang n ` 1, ce qui achève la récurrence.

Si f P C npI,Rq et g P C npJ,Rq avec fpIq Ă J , alors g ˝ f P C npI,Rq. De même, si f et g sont de classe C 8,
alors g ˝ f P C 8.

Théorème - Composition, inverse
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Si f P C npI,Rq ne s’annule pas sur I, alors 1
f P C npI,Rq. De même pour le cas C 8.

Démonstration. Par récurrence : le cas n “ 0 est déjà montré. Par ailleurs, si on fixe n P N et on suppose que le
résultat est vrai au rang n, alors pour f, g P C n`1, g ˝ f est dérivable comme composée de fonctions dérivables, et
pg ˝ fq1 “ f 1 ˆ g1 ˝ f . La fonction f 1 est de classe C n et, par hypothèse de récurrence, g1 ˝ f est de classe C n, donc
par produit pg ˝ fq1 est de classe C n. On en conclut que g ˝ f est de classe C n`1.
Pour le deuxième point, il suffit de considérer la composition avec la fonction inverse.

Remarque. Par conséquent, C npI,Rq et C 8pI,Rq sont stables par quotient lorsque le dénominateur ne s’annule pas.

Soit n P N‹. Si f P C npI,Rq (resp. C 8pI,Rq) et f est bijective de I sur J et f 1 ne s’annule pas sur I, alors f´1

est de classe C n (resp. C 8) sur J .

Théorème - Réciproque

Démonstration. Par récurrence : exercice.

III Accroissements finis
Dans cette partie, on suppose que I est un intervalle, et a P I.

1. Extrema locaux et globaux

On dit que f admet un maximum (resp. minimum) local en a si f ď fpaq (resp. f ě fpaq sur un voisinage de a
dans I.
On dit que f admet un extremum local en a si f admet un maximum ou un minimum local en a.

Définition - Extremum local

Remarque. On appelle souvent minimiseur (local) de f un point en lequel f admet un minimum (local). Attention à
ne pas confondre minimum m de f et minimiseur. On introduit de même la notion de maximiseur de f .

Rappel : f ď fpaq sur un voisinage de a dans I signifie qu’il existe η ą 0 tel que pour tout x Psa ´ η, a ` ηrXI, on a
fpxq ď fpaq.

Si f est dérivable en un point a intérieur à I, c’est-à-dire que a n’est pas une extrémité de I, et f admet un
extremum local en a, alors

f 1paq “ 0.

Théorème - Condition nécessaire d’optimalité d’ordre 1

Remarque. On appelle point critique de f tout point a P I tel que f 1paq “ 0. La condition nécessaire d’optimalité
entraîne alors que si f est dérivable sur I, ses minimiseurs et maximiseurs locaux éventuels sont parmi les points
critiques de f sur I.

Démonstration. Supposons que f admet en a un minimum local. Il existe alors η ą 0 tel que, pour tout x Psa´η, a`ηr,
fpxq ě fpaq (il est possible de choisir η suffisamment petit pour que sa´ η, a` ηrĂ I, car a n’est pas extrémité de I).
Pour tout x Psa ´ η, ar, on a fpxq ´ fpaq ě 0 et x ´ a ď 0. Par conséquent,

fpxq ´ fpaq

x ´ a
ď 0, ainsi f 1

gpaq “ lim
xÑa´

fpxq ´ fpaq

x ´ a
ď 0.

De même, on a f 1
dpaq ě 0. Comme f 1paq “ f 1

gpaq “ f 1
dpaq, on a f 1paq “ 0.

Remarques.

– Ce théorème donne une condition nécessaire, mais pas
suffisante. Par exemple, f : x ÞÑ x3 a une dérivée nulle
en 0, mais n’admet pas d’extremum en 0.
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– En revanche, lorsque f est dérivable sur I, si a est un point critique de f et que f 1 change de signe en a alors f
atteint un extremum local en a.

– Le résultat n’est valable que si a n’est pas une extrémité de l’intervalle. Par exemple la fonction g : x ÞÑ x admet
un maximum local en 1 sur r0, 1s et un minimum local en 0 sur r0, 1s, mais aucun de ces points n’est un point
critique.

2. Théorème de Rolle

Soit f une fonction continue sur un intervalle ra, bs et dérivable sur sa, br avec a ă b. Si fpaq “ fpbq alors il existe
au moins un réel c de sa, br tel que f 1pcq “ 0.

Théorème - Théorème de Rolle

Remarques.
– Le théorème est vrai dans le cadre général où f est dérivable sur

sa, br et continue sur ra, bs. Il peut bien sûr être utilisé dans le cas
particulier où la fonction f est dérivable sur ra, bs : dans ce cas,
la fonction est aussi continue sur ra, bs.

– Interprétation graphique : si fpaq “ fpbq, la courbe représentative
de f possède (au moins) une tangente horizontale, et f admet (au
moins) un extremum local sur sa, br. a bβ

fpaq “ fpbq

Démonstration. La fonction f est continue sur le segment ra, bs, donc elle y admet un minimum et un maximum,
d’après le théorème des bornes atteintes. Ainsi, il existe α, β P ra, bs tels que pour tout x P ra, bs,

fpαq ď fpxq ď fpβq

– Si α et β sont tous deux extrémités de ra, bs alors la condition fpaq “ fpbq entraîne que f est constante sur ra, bs
(car son minimum est égal à son maximum). Par suite, n’importe quel élément de sa, br annule la dérivée de f .

– Sinon, l’un au moins des réels α, β n’est pas extrémité de l’intervalle ra, bs et puisque f admet un extremum local
en ce point et y est dérivable, la dérivée de f s’y annule.

Exemple. Si P P RrXs admet deux racines réelles distinctes alors P 1 admet au moins une racine réelle.

Si a, b sont deux racines réelles distinctes de P , alors rP paq “ rP pbq “ 0. Comme rP est dérivable sur ra, bs,
le théorème de Rolle entraîne l’existence de c Psa, br tel que rP 1pcq “ 0.

3. Théorème des accroissement finis

Si f est continue sur un intervalle ra, bs et dérivable sur sa, br avec a ă b, alors il existe au moins un réel c Psa, br
tel que

fpbq ´ fpaq “ pb ´ aq f 1pcq.

Théorème - Théorème des accroissements finis

Remarque. Interprétation graphique : l’égalité

f 1pcq “
fpbq ´ fpaq

b ´ a

signifie que la courbe représentative de f possède (au
moins) une tangente parallèle à sa corde passant par
pa, fpaqq et pb, fpbqq. a bc

Démonstration. On introduit la fonction g : ra, bs Ñ R définie par

g : x ÞÑ fpxq ´ fpaq ´
fpbq ´ fpaq

b ´ a
px ´ aq.

La fonction g est continue sur ra, bs et dérivable sur sa, br, car f l’est. On remarque par ailleurs que gpaq “ gpbq “ 0.
Ainsi, par le théorème de Rolle, on sait qu’il existe c Psa, br tel que g1pcq “ 0.

Lycée Montesquieu 6



MPSI – Mathématiques 2025-26

Pour tout x Psa, br, on a g1pxq “ f 1pxq ´
fpbq ´ fpaq

b ´ a
, donc g1pcq “ f 1pcq ´

fpbq ´ fpaq

b ´ a
“ 0, ce qui conclut.

Si f est continue sur ra, bs, dérivable sur sa, br, et s’il existe deux réels m et M tels que m ď f 1pxq ď M pour
tout x Psa, br, alors

m pb ´ aq ď fpbq ´ fpaq ď M pb ´ aq.

En particulier, si |f 1| est majorée par un réel k sur l’intervalle I, alors pour tous x, y P I,

|fpyq ´ fpxq| ď k |y ´ x|.

Théorème - Inégalité des accroissements finis

Remarque. S’il existe k P R tel que fpyq ´ fpxq| ď |y ´ x| pour tous x, y P I, on dit que f est lipschitzienne sur I. On
dit même qu’elle est k-lipschitzienne lorsqu’on veut préciser la constante k.

Démonstration. Par le théorème des accroissements finis, il existe un réel c Psa, br tel que

fpbq ´ fpaq “ pb ´ aqf 1pcq.

Comme m ď f 1pcq ď M , ceci donne m pb ´ aq ď fpbq ´ fpaq ď M pb ´ aq.
Si |f 1| est majorée par k P R et x, y P I avec x ă y, alors on peut appliquer le point précédent car ´k ď f 1 ď k sur
rx, ys. On a ainsi ´k py ´ xq ď fpyq ´ fpxq ď k py ´ xq.

Exemples.

1. Les fonctions cos et sin sont 1-lipschitziennes.

On a | cos | “ | ´ sin | ď 1 sur R, donc | cos y ´ cosx| ď |y ´ x| pour tous x, y P R d’après l’inégalité
des accroissements finis. En d’autres termes, cos est 1-lipschitzienne. De même pour sin.

2. Pour tout n P N‹, 1

n ` 1
ď lnpn ` 1q ´ lnpnq ď

1

n
.

La fonction f : x ÞÑ lnx est dérivable sur rn, n ` 1s. Comme f 1pxq “ 1
x pour tout x P rn, n ` 1s, on a :

@x P rn, n ` 1s,
1

n ` 1
ď f 1pxq ď

1

n
, donc 1

n ` 1
ď lnpn ` 1q ´ lnpnq ď

1

n
,

par l’inégalité des accroissements finis.
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