MPSI — Mathématiques 2025-26

Chapitre 13

Groupes, anneaux, corps

| Lois de composition interne

Dans tout le chapitre, E désigne un ensemble non vide, et K désigne R ou C.

1. Définitions

Définition - Loi de composition interne, magma

On appelle loi de composition interne, ou loi interne sur E une application » : £ x E — E. On appelle alors
magma et on note (E, ) ’ensemble F muni de sa loi de composition interne *.

Remarques.

— Si (E,*) est un magma, on note x * y 'image de (x,y) € E? par 'application .
— Les lois internes sont souvent notées de maniere additive : = + y ou de maniére multiplicative : z x y ou xy. Il
s’agit d’un choix arbitraire qui dépend du contexte, la seule contrainte est de se tenir au choix effectué.

Exemples.

— L’addition + et la multiplication x sont des lois internes sur les ensembles N, Z, Q, R, C.
— L’addition est une loi interne sur .4, ,(K), le produit matriciel est une loi interne sur .#, (K).

— L’addition + et la multiplication x sur % (FE,R) sont des lois internes, on dit qu’elles sont induites par les lois
+ et x sur R.

— La composition o est une loi interne sur .7 (E, E).
— L’union U et intersection n sont des lois internes sur 'ensemble £2(FE) des parties de E.

Définition - Commutativité, associativité

Soit (E,*) un magma. On dit que la loi * est :

— commutativesi: Vr,ye B, x*xy = y*x.
— associative si : Vx,y,z€ E, z*x(y*xz) = (x*y) * 2.

Remarque. Si * est associative, on omet les parenthéses, qui deviennent inutiles : zxy*z = zx (y*2) = (x*y) * 2.
En notation multiplicative, on note ™ = ¢ % ... x x, et en notation additive, on note nx = * ... * x.
n termes n termes
Exemples.
— Les lois + et x sur R sont commutatives et associatives.
— Les lois + et x sur .4, (K) sont associatives, mais x n’est pas commutative.
— Laloi o sur #(E, E) est associative mais non commutative.

— La soustraction — est une loi interne sur Z qui est non associative et non commutative (on a par exemple
3—2-1)=(3-2)—1let2—-1=1-2).

Définition - Distributivité
Si x et ¢ sont deux lois internes sur E, on dit que * est distributive par rapport a o si

Ve,y,2€ B, zx(yoz) = (xry)o(xxz) et (yoz)xz = (y*z)o(zxx).

Exemples.

— Dans R, la loi x est distributive par rapport a la loi +.
— Dans Z(F), la loi U est distributive par rapport a la loi N, et la loi n distributive par rapport & la loi u.
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Définition-théoréme - Elément neutre

Si (E,*) est un magma et ¢ € F, on dit que e est un élément neutre de (E, ) (ou pour la loi *) si
VreE, xxe = exx = x.

S’il existe un élément neutre pour la loi *, alors il est unique.

Démonstration. Si e et ¢’ sont deux éléments neutres pour *, alors e = ex ¢’ = ¢/, donc e = ¢€'. O

Remarque. S’il existe, 1’élément neutre est souvent noté Op ou 0 en notation additive, et 1 ou 1 en notation
multiplicative.

Exemples.

1. (R,+) admet 0 pour élément neutre, et (R, x) admet 1 pour élément neutre.

2. (#(E,R), +) a pour élément neutre la fonction nulle, et (% (E,R), x) a pour élément neutre la fonction constante
égale a 1.

3. (#,(K),+) a pour élément neutre la matrice nulle, et (.#,(K), x) a pour élément neutre I,,.

4. (#(E,E),0) a pour élément neutre la fonction Idg.

Exercice 1. Quel est ’élément neutre de (£ (E), u) ? L’élément neutre de (Z(E), n)?

Définition-théoréme - Elément inversible, inverse
Si (E,*) a pour élément neutre e, on dit que = € E est inversible il existe un élément y € E appelé inverse de
rtelquexxy = y*xx = e.
Si (E,«) est associatif et si x € E admet un inverse, alors il est unique. On le note ! (si la notation est
multiplicative), ou —z (si la notation est additive).

Démonstration. Si y et z sont des inverses de z, alors par associativité yxaxxz = (y*xx)*x2z = exz = z, et
yxx*z =y*(r*rxz) = yxe =y, doncy = z. O

Remarque. On peut construire un exemple de magma non associatif tel qu'un élément a deux inverses : si E est un
ensemble a trois éléments 1g,a,b et si la loi interne * est décrite par

* lE a b
]-E lE a b
a a 1E 1E
b | b 1 1g

alorsaxa=a*xb=>bxa = 1g, donc a et b sont deux inverses distincts de E. Comme (a*a)*b="bet ax (a*b) = q,
la loi * n’est en effet pas associative.

Exemples.

— Dans (Z, +), tout élément est inversible, mais pas dans (N, +) ou seul 0 admet un inverse.

— Dans (R*, x), tout élément est inversible, mais pas dans (R, x) ot 0 n’est pas inversible.

— Dans (#,(K), +), tout élément est inversible, mais dans (., (K), x), seules les matrices de A € GL,(K) ad-
mettent un inverse pour la loi x, il s’agit bien sfir de la matrice inverse A~1.

— Dans (% (E,R),+) tout élément est inversible, mais dans (.#(E,R), x), seules les fonctions qui ne s’annulent
pas admettent un inverse.

— Dans (Z(E, E), o), le éléments inversibles sont les fonctions f bijectives, d’inverse leur bijection réciproque f~1.

Théoréme - Inverse et opérations

Si (E, %) est un magma associatif possédant un élément neutre 1g, alors
— Si z € E est inversible, alors 27! est inversible et (z71)~! = .

— Si z € E est inversible et n € N, alors ™ est inversible, et (2™)~! = (z71)". On note cet élément z~".
— Si z,y € E sont inversibles, alors z * y est inversible et (z xy)~! =yt x 2L

Lycée Montesquieu 2



MPSI — Mathématiques 2025-26

Remarques.

— En notation additive : —si x est inversible alors —z l’est aussi et —(—z) = z,
— si z est inversible alors na lest aussi et —(nx) = n(—1x), qu’on note —nz.

— On retrouve par exemple les propriétés déja rencontrées pour (4, (K), x).

Démonstration. Ce résultat a déja été montré dans le cas de 4, (K). Les preuves sont les mémes dans ce cas plus
général. O

Définition - Partie stable
Si (E,*) est un magma et F' c E, on dit que F est stable par * si

Vex,ye I, xxyel.

Dans ce cas, (F,*) est un magma. On dit que la loi * induit une loi interne sur F'.

Exemples.

— Dans (R, x) : R, est une partie stable par x, mais pas R_.

— Dans (A, (K),+) : les ensembles .7, (K), 7.1 (K), 2,(K) sont stables par +, mais pas GL,,(K).
— Dans (A, (K), x) : les ensembles .7, (K), 7. (K), 2,(K), GL,(K) sont stables par x.

— Dans #(R,R), 0) : ensemble des fonctions croisantes est stable par o.

Il Structure de groupe

1. Groupes

Définition - Groupe
On dit qu’un magma associatif (G, *) est un groupe si :

¢ G possede un élément neutre,
o tout élément de G est inversible.

Si de plus * est commutative, on dit que (G, x) est un groupe commutatif, ou abélien.

Remarque. Si (G, .) est un groupe et « € G, alors toutes ses puissances appartiennent & G : pour tout n € Z, z™ € G.

En notation additive, ceci s’écrit : si (G, +) est un groupe et z € GG, alors pour tout n € Z, nx € G.

Exemples.

1. (C,4), (R,+), (Q,+), (Z,+) sont des groupes abéliens.

2. (C*, x), (R*, x) et (Q*, x) sont des groupes abéliens. En revanche, (C, x), (R, x), (Q, x) ne sont pas des groupes :
0 n’est pas inversible dans ces magmas.

3. (Z*, x) n’est pas un groupe : par exemple, 2 n’a pas d’inverse dans Z*.

4. (M,(K), +) est un groupe, mais (., (K), x) n’en est pas un (par exemple, la matrice nulle n’est pas inversible).
Plus généralement, (., ,(K),+) est un groupe.

5. (GL,(K), x) est un groupe : si A € GL,(KK), alors A posséde un inverse dans GL,,(K), qui est A~
(GL,(K), +) n’est pas un groupe : on a vu que GL,, (K) n’est pas stable par la loi +.

6. L’ensemble des bijections de E dans E, noté &g ou &(F), forme un groupe pour la loi o, qu’on appelle groupe
symétrique de E et qu’on note (&g, o).

En effet, si f € &g, alors sa bijection réciproque f~! est encore un élément de &, donc tout élément
de G admet un inverse dans Sg.

Remarque. Il arrive fréquemment qu’on omette de préciser la loi du groupe lorsque le contexte est clair : par exemple,
le groupe C désigne le groupe (C,+), et le groupe C* désigne le groupe (C*, x). De méme pour R, Q, Z, R*, Q*, mais
aussi ., (K), GL,,(K). D’apres ce qui précede, il n’y a pas d’ambiguité.

Lorsqu’on travaille avec un groupe G quelconque de maniére théorique, il arrive qu’on ne précise pas la loi, et qu’on
utilise par défaut la notation multiplicative : on note 1¢ ou 1 I’élément neutre de G et xy pour x * y.
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Définition-théoréme - Groupe et régularité
Si (G, %) est un groupe, alors tout élément = € G est régulier, c’est-a-dire :
Va,be G, x*a =x+xb=a=b et axx =bxx = a=>0b.

On dit aussi qu’on peut simplifier (& gauche ou & droite) par tout élément de G.

Démonstration. Soient a,b € G tels que x x a = x * b. Comme x est inversible dans G, d’inverse noté !, on a

2 ' xxxa=2a"t*xxb, donc a = b. De méme pour le deuxiéme cas. O

Définition-théoreme - Groupe produit
Si (G, *) et (H, ) sont des groupes, alors (G x H,e) est un groupe, ou la loi e est donnée par :
V(z,y),(z",y") e G x H, (z,y)e(",y) = (z*2’,yoy).

On dit que G x H est le groupe produit associé a G et H. On généralise cette définition au produit G x ... x G,
de n groupes G1,...,Gy.

Démonstration. 11 est clair que e est une loi interne associative sur G. Par ailleurs, si on note 15 et 1y les éléments
neutres respectifs de G et H, alors (1g, 1) est élément neutre de G x H. Pour finir, si (z,y) € G x H, alors en notant
271 (resp. y~!) I'inverse de = dans G (resp. de y dans H), le couple (z~1,y~1) est inverse de (x,y) dans G x H. O

Exemple. La loi du groupe produit R x R est donnée par : ((z,y), (2',y)) — (x+ 2",y + ).

2. Sous-groupes

7

Définition - Sous-groupe
Soient (G, *) un groupe et H une partie de G stable par . On dit que H est un sous-groupe de G si (H,*) est
lui-méme un groupe.

Exemples.

1. Un groupe G a toujours pour sous-groupe {e} (ou e désigne 1’élément neutre de G), et G. On dit que ces deux
sous-groupes sont triviaux.

2. Z est un sous-groupe de R, et R est un sous-groupe de C (muni de la loi +), R* est un sous-groupe de C* (muni
de la loi x).

Théoréme - Caractérisation des sous-groupes
Si (G,.) est un groupe et H — G, alors :
IG eH
H est un sous-groupe de G < H est stable par la loide G : Vax,ye H, zye H
H est stable par passage & l'inverse : Yo e H, 2 ' e H
. 1G eH
Ve,ye H, zy e H

Remarques.

— Le résultat ci-dessus est écrit en notation multiplicative. En notation additive, ceci devient : H < G est un
sous-groupe de (G, +) si et seulement si Og € H et pour tous z,y€ H, x —y € H.

— On peut remplacer la vérification de 1¢ € H par : “H est non vide”.
Démonstration. On montre que H est un sous-groupe de G ssi 1g € H et Yo,y € H, xy~' € H, le reste est analogue.

— Si H est un sous-groupe de G, notons 1z son élément neutre. On a alors 1ylg = 1y car 1y € G, et 1gly = 1p,
donc 1ylg = 11y, ce qui donne 1y = 14 car 1y est régulier.

Soient z,y € H. On note yél Iinverse de y dans G et yI:,1 son inverse dans H. On a yal = y;Il car y est régulier
dans G et yély = yﬁly = 1y = 1. Ainsi, par stabilité de H par la loi de G, on a zy~! € H.

Lycée Montesquieu 4



MPSI — Mathématiques 2025-26

— Supposons que lg € H et Ve,ye H, zy ' e H. Siye H, alors 1gy~' € H, donc y~' € H, donc y est inversible
dans H. Par ailleurs, si x,y € H, alors zy = Jc(y_l)71 € H, donc H est stable par la loi de G. Comme par ailleurs
la loi de G est associative, on en déduit que (H,.) est un groupe. O

Remarques.

— Dans la pratique, on utilisera toujours le résultat ci-dessus pour montrer que H est un sous-groupe de G.

— Lorsqu’on souhaite montrer que (H,.) est un groupe, il sera souvent trés utile de montrer qu’il s’agit d’un
sous-groupe d’un groupe (G,.) qu’on identifiera. De cette maniére, on pourra s’affranchir de la vérification de
I'associativité, I’élément neutre et ’existence d’inverse : ces propriétés seront directement héritées de celles de la
loi . sur G.

Exemples.
1. Sin e N, alors nZ = {kn, k € Z} est un sous-groupe de Z (muni de la loi +).

En effet, on a d’abord nZ < Z. Par ailleurs, 0 est un multiple de n, donc 0 € nZ, et si x,y € nZ, alors
x — y est un multiple de n donc x — y € nZ.

2. Sia,beZ, alors aZ + bZ = {au + bv, u,v € Z} est un sous-groupe de Z.

Si on note G = aZ + bZ, alors on a 0 € G et si n,m € G, il existe k,[,k’,l' € Z tels que n = ka + b,
m=Fka+U'b doncn—m=(k-K)a+({-1)beG.

3. R% est un sous-groupe de (R*, x).

4. L’ensemble U = {z € C, |z| = 1} est un sous-groupe de C* (muni de la loi x).

|2

'l

En effet, on a U = C* et 1 € U. Par ailleurs, si z, 2’ € U, alors |22’ =1, donc zz'" 1 e U.

=
5. Si I est un intervalle de R, alors ¢°(I,R) est un sous-groupe de (% (I,R), +).
Exercice 2.

1. Montrer que S = {z +— az + b, (a,b) € C* x C} est un sous-groupe de G¢ (muni de la loi o).
2. Montrer que T' = {A € 7,7 (K), Vi€ [1,n], a;; = 0} est un sous-groupe de GL,,(K) (muni de la loi x).

Théoréme - Intersection de sous-groupes

Si G est un groupe et H, H' sont des sous-groupes de G, alors H n H' est un sous-groupe de G.

Plus généralement, si (H;);c; est une famille de sous-groupes de G, alors (| H; est un sous-groupe de G.
i€l

Démonstration. Traitons le cas de deux sous-groupes, le cas général est identique. Ona H n H' ¢ G, 1 € H n H’,
etsiz,ye Hn H', alors zy~ ' € H et xy~' € H' car H et H' sont des sous-groupes, donc zy~' € H n H'. O

Exemple. Sia,b € Z, alors ’ensemble aZ n bZ des multiples communs a a et b est un sous-groupe de Z.

/\  L'union de deux sous-groupes de G n’est pas un sous-groupe en général.

Par exemple, 27 et 37 sont des sous-groupes de Z, mais H = 27 u 3Z n’est pas un sous-groupe de Z : 2,3 € H
mais 2+ 3¢ H.

On retiendra le résultat suivant, montré en TD : si H et H' sont des sous-groupes de G, alors H u H' est un
sous-groupe de G si et seulement si 'un des sous-groupes H, H' est inclus dans l’autre.

" Théoréme - Sous-groupes de Z

Les sous-groupes de Z sont exactement les ensembles nZ, ou n € N.

Démonstration. On sait déja que les ensembles de la forme nZ sont des sous-groupes de Z. Si maintenant G est un
sous-groupe de Z, il s’agit de montrer que G est de la forme nZ pour n € N.

- Si G = {0}, alors G = 0Z.
— Si G = {0}, alors il existe k = 0 tel que k € G, et donc —k € G. Ceci entraine que G N N* est une partie non vide
de N. On pose alors n = min G n N*, et on va montrer que G = nZ.
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— On anZ c G : on sait que n € G, et comme G est stable par +, on a aussi kn € G pour tout k € Z.

— OnaGcnZ:sixzeG,on écerit = ng + r la division euclidienne de x par n, on a alors r € [0,n — 1].
Comme ng € nZ, on a aussi nq € G. Ainsi, r =z —nge G. Comme r€ G "N et r <n, on a a alors r =0,
et x € nZ. O

Remarque. Soient a,b € Z.

o On retrouve le fait que aZ n bZ est de la forme mZ avec m € N, en tant que sous-groupe de Z. Nous avons déja
vu d’ailleurs que aZ N bZ = (a v b)Z.

¢ On retrouve également que aZ + bZ est de la forme dZ avec d € N, en tant que sous-groupe de Z. Nous avons
déja vu d’ailleurs que aZ + bZ = (a A b)Z.

3. Morphismes de groupes

Définition - Morphisme de groupes

Soient (G, *) et (G',¢) deux groupes. On dit qu'une application f : G — G’ est un morphisme de groupes si

Vl‘,yEG, f(x*y) = f(l‘)Of(y)

Remarque. En notation multiplicative pour les deux groupes G, G’, ceci se récrit : Va,y € G, f(zy) = f(z)f(y).
Exemples.

— La fonction exp est un morphisme de groupes de (R, +) dans (R, x).

— La fonction In est un morphisme de groupes de (R%, x) dans (R, +).

— Si a € R, la fonction f :z — ax définit un morphisme de groupes de (R, +) dans (R, +).

— L’application ¢ : f — Sé f(t) dt définit un morphisme de groupes de (¢°([0,1],R), +) dans (R, +).

— L’application transposition f : A+ AT définit un morphisme de groupes de ., (K) dans lui-méme.

L’application A — tr A définit un morphisme de groupes de .#,(K) dans K.
- Si Ae A, ,(K), alors l'application X — AX définit un morphisme de groupes de .7, 1 (K) dans ., 1(K).

Théoréme - Morphismes, éléments neutres et inverses

Si f: G — G’ est un morphisme de groupes, alors f(1g) = 1l et pour tout z € G, f(z~%) = f(z)~ L.

Démonstration. Ona f(1¢) = f(lglg) = f(1g)f(1¢). En multipliant a droite par f(1¢) ™!, on obtient 1g: = f(1¢g).
SizeG,ona f(x)f(x71) = f(rz~!) = 1¢. En multipliant & gauche par f(x)~!, on obtient f(z~!) = f(x)~t. O

Remarque. Avec la notation additive, ceci d’écrit f(0g) = Ogr, et pour tout z € G, f(—z) = —f(x).

 Théoréme - Composition de morphismes

Soient f : (G, x) = (G',0) et g: (G',0) — (G”, o) des morphismes de groupes. Alors, go f : (G,*) — (G”,e) est
un morphisme de groupes.

Démonstration. Soient x,y € G, on a g(f(z*xy)) = g(f(x) © f(y)) = 9(f(x)) ® g(f(y))- =

" Théoréme - Image directe, image réciproque d’un sous-groupe
Soit f : G — G’ un morphisme de groupes.

— L’image directe d’un sous-groupe de G est un sous-groupe de G'.
— L’image réciproque d’un sous-groupe de G’ est un sous-groupe de G.

Démonstration. On choisit une notation multiplicative pour G et G’ pour plus de clarté.

— Soit H un sous-groupe, montrons que f(H) = {f(x), © € H} est un sous-groupe de G'. On a tout d’abord
lgr € f(H) car 1g € H et f(lg) = lgr. Ensuite, si y,y’ € f(H), alors il existe z,2’ € H tels que y = f(z) et
y' = f(a'). Ainsi, yy'~t = f(2)f(2') 7" = f(2)f(a""") = flaa’") € f(H).
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— Soit H' un sous-groupe de G’, montrons que f~'(H') = {z € G, f(x) € H'} est un sous-groupe de G. On a
f(lg) = 1g: € H', donc 1 € f~Y(H'). Par ailleurs, si x,2" € f~1(H’), alors f(x), f(2') € H', donc f(xa’'~1)
f(@)f(2')~t e H', donc za'~t € f~H(H').

[

4. Noyau et image d’un morphisme de groupes

Les cas particuliers suivants d’images directes et réciproques de sous-groupes joueront un grand rdle dans la suite.

Définition - Image et noyau d’un morphisme
Soient f : G — G’ un morphisme de groupes et e’ 1’élément neutre de G’. On appelle

— image de f, et on note Im f le sous-groupe f(G) = {f(z), =z € G} de G,
— noyau de f, et on note Ker f le sous-groupe f~1({e'}) = {x e G, f(z)=¢€'} de G.

Exemples.
— L’application f : § — ' définit un morphisme de groupes de (R, +) dans (U, x). On a :

oImf={f0), 0cR} ={ R} =T,
o Kerf = {0 eR, f(0) =0} = {2kr, ke Z} = 2xZ.

- Si Ae A, ,(K), on a vu que fg : X — AX définit un morphisme de groupes de %, 1(K) dans .4, 1(K). Ainsi,
Ker fa = [3'({0n1}) = {X € #,1(K), AX =051}

On remarque que, dans ce cas, il s’agit exactement de la notion de noyau de la matrice A, rencontrée dans le
chapitre MATRICES ET SYSTEMES LINEAIRES.

Remarque. On peut alors montrer qu'un ensemble définit un sous-groupe en montrant qu’on peut le voir comme le
noyau ou 'image d’un morphisme de groupes.

“ Théoréeme - Noyau, image, injectivité et surjectivité
Si f: G — G’ un morphisme de groupes et e est 1’élément neutre de G, alors

o f est surjectif si et seulement si Im f = G/,
o f est injectif si et seulement si Ker f = {e}.

Démonstration.

o Il s’agit de la définition de la surjectivité de 'application [ : G — G'.
© Supposons que f est injectif, et montrons Ker f = {e}. Comme e € Ker f, il suffit que montrer que Ker f c {e}.
Si z € Ker f, alors f(z) = ¢’ = f(e). Par injective, on a alors « = e, ce qui conclut.

Réciproquement, si Ker f = {e}, on considére z,y € G tels que f(z) = f(y). On a alors f(z)f(y)~! = ¢/, donc
fley™) =€’ et zy~! € Ker f. Ainsi, on a 2y~! = e, ce qui donne x = y. O

Remarque. Nous avons choisi la notation multiplicative dans la preuve ci-dessus, mais nous aurions aussi bien pu
écrire le raisonnement en notation additive : si f(x) = f(y), alors f(z)— f(y) = €/, donc f(x—y) =€, et z—y € Ker f.

Exemple. Le morphisme f : § — e est surjectif, car Im f = U, mais pas injectif, car Ker f = {0}.

5. Isomorphismes, automorphismes

Définition - Isomorphisme de groupes, groupes isomorphes
On dit qu’un morphisme de groupe f : G — G’ est un isomorphisme de groupes si f est bijectif. On dit alors que
G et G’ sont des groupes isomorphes.
Dans le cas ou G = G’, on appelle automorphisme de G un isomorphisme f : G — G. On note Aut(G) 'ensemble
des automorphismes de G.
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Exemple. Les groupes R et R} sont isomorphes : la fonction exp : R — R? définit un isomorphisme du groupe R
dans le groupe R%..

" Théoréme - Isomorphismes et composition, réciproque
Soient f: G — G’ et g: G' — G” des isomorphismes de groupes.

— La composition g o f est un isomorphisme de groupes de G dans G”.
— La réciproque f~! est un isomorphisme de groupes de G’ dans G.

Démonstration.

— On sait qu'une composée de morphismes est un morphisme, et qu'une composée de bijections est une bijection.
— On sait déja que f~! est une bijection, il reste & voir que c’est un morphisme. Soient y,7’ € G’ et z,2’ € G
tels que f(z) = y et f(z') = y'. On a alors f(zx') = f(z)f(x') = yy', donc xz’ = f~1(yy'). Ceci entraine que
) = z2’ = f~(y)f (%), donc f~! est un morphisme. O

Théoréme - Groupe des automorphismes

Si G est un groupe, alors (Aut(G), o) est un groupe. On parle du groupe des automorphismes de G.

Démonstration. (Aut(G),o) est un sous-groupe de (&(G),0). En effet, Idg € Aut(G), et 0 o 771 € Aut(G) pour tous
0,7 € Aut(G) : 771 est un isomorphisme, donc o o 7 est un isomorphisme de G' dans G. O

Exercice 3. Déterminer tous les automorphismes de Z.

Ill  Structure d’anneau, structure de corps

1. Définitions

Définition - Anneau
Si A est un ensemble muni de deux lois de composition internes + et x, on dit que (A, +, X) est un anneau si
— (A, +) est un groupe abélien,
— la loi x est associative, distributive par rapport a +, et A admet un élément neutre pour x.

Si de plus la loi x est commutative, on dit que A est un anneau commutatif.

Exemples.

1. (Z,+, x), (Q,+, x), (R, +, x), (C,+, x) sont des anneaux commutatifs.
2. (#(E,R),+, x) est un anneau commutatif.
3. (M (K),+, x) est un anneau, qui est non commutatif si n > 2.

Remarques.

— Il arrive fréquemment qu’on ne précise pas les lois d’'un anneau lorsque le contexte est clair : on évoquera par
exemple 'anneau Z, 'anneau ., (K).

— Dans un anneau A, ’élément neutre pour + est généralement noté 04 ou 0, et I’élément neutre pour x est
généralement noté 14 ou 1.

— Si A est un anneau, a € A et n € N, les éléments na et a™ existent, et désignent respectivement a +a+ ...+ a
etaxax...xa.

— Tout élément a d’un anneau a toujours un inverse pour la loi 4+, noté —a, mais n’a pas toujours un inverse pour
la loi x. Lorsqu’on parle d’un élément inversible d’un anneau, on I’entend donc toujours pour la loi x.

Théoréme - Regles de calcul dans un anneau
Soient A un anneau et a,be A. On a :

o 0gxa=ax04 =04.
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o (—a)b = a(=b) = —ab et (—a)(—=b) = ab. Plus généralement pour n € Z, (na)b = a(nb) = nab.

Démonstration.
o Onalgxa=(04+04)%xa=04xa+04 xa par distributivité. Il suffit de simplifier® par 04 x a, et on obtient
OA x A= OA.
o On a (—a+ a)b =040 =04 d’apres le point précédent. Ainsi, par distributivité, on a (—a)b + ab = 04, ce qui
donne (—a)b = —ab. L’autre cas est similaire. On déduit de ceci que (—a)(—b) = —(a(—b)) = —(—ab) = ab.
On en déduit le dernier point par récurrence immédiate le résultat pour n € N, puis ce sui précéde montre qu’il
est vrai pour n € Z. O

Remarques.

— En particulier, (—14)a = a(—14) = —a, et (=14)? = 14.
— Il est possible d’avoir 14 = 04. Dans ce cas, on a A = {04} : en effet, on a alors a = 1 g4a = 04a = 04 pour tout
a € A. L’anneau A est alors appelé I’anneau nul.

Théoreme - Formule du bindme, formule de Bernoulli

Si A est un anneau et a,b € A commutent, 7.e. ab = ba, alors pour tout n € N,

n n—1
(a+b)" = Z <Z) a® bk, a”—b" = (b—a) Z atpnTir,
k=0 k=0

Démonstration. Mémes preuves que dans R. O

Théoreme et définition - Groupe des inversibles d’'un anneau

Soit A un anneau, on note A* ’ensemble des éléments inversibles de A. (A*, x) est un groupe, appelé groupe
des inversibles de A.

Démonstration. On sait déja que x est associative, et 1’élément neutre 14 appartient & A* car 13 = 14. Par ailleurs,
x est une loi interne sur A* car un produit d’éléments inversibles de A est également inversible. Pour finir, tout

élément de A est inversible dans A* :siz e A%, alors x~ ! € A%, O
Exemples. o C* =C* R* =R*,
o 77 ={-1,1},

o Z(R,R)* ={f:R—R, f nes’annule pas}.

Définition - Anneau intégre
On dit qu'un anneau A non nul est intégre si

Va,be A, ab=04 = (a=04 oub=04).

Autrement dit, le produit de deux éléments non nuls est non nul.

Exemples. — Les anneaux Z,Q, R, C sont integres.

— L’anneau #,,(K) n’est pas intégre si n > 2 : par exemple, E17n2 =0z, (x)-

Exercice 4. L’anneau .#([0,1],R) est-il intégre ?

Définition-théoreme - Anneau produit

Si (A, +, x) et (B, +, x) sont deux anneaux, alors (A x B, +, x) est un anneau, ou les lois de A x B sont données

ar :
P V(z,y), (' ,y) e Ax B, (z,y)+ («",¢)=(@+2",y+y) et (z,9)(,y)=(z2',y9).

1. (A, +) est un groupe, donc on peut simplifier par tout élément.
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Exemple. Z2 est un anneau, muni des lois : (z,y) + (2/,9') = (x + 2",y +9/), et (x,9) (z',y) = (x2',yy').

2. Sous-anneaux

De méme que pour les groupes, nous allons introduire la notion de sous-anneaux. Ici encore, il sera plus commode
pour montrer qu'un ensemble est un anneaux de lidentifier comme sous-anneau d’un anneau de référence.

Définition - Sous-anneau
Soient (A, +, x) un anneau et B une partie de A. On dit que B est un sous-anneau de A si

o B est stable par les lois + et x,
o 14 € B,
o (B, 4+, X) est un anneau.

Exemples. Z est un sous-anneau de Q, qui est un sous-anneau de R, qui est un sous-anneau de C.

" Théoréme - Caractérisation des sous-anneaux
Si A est un anneau et B ¢ A, alors B est un sous-anneau de A si et seulement si
<& 1A € B,
o B est stable par différence : Vx,ye B, t —y € B,
© B est stable par produit : Vx,y € B, zy € B.

Démonstration. La preuve est analogue a celle pour les groupes, et est laissée en exercice. [
Exemples.
~ Si I est un intervalle de R, (¢%(I),R) est un sous-anneau de .Z (I, R).

En effet, la fonction = € I — 1 est bien de classe €%, et on sait que €*(I,R) est stable par différence
et par produit.

— L’ensemble 7,1 (K) des matrices triangulaires supérieures de .#,,(K) est un sous-anneau de ., (K).

En effet, I, € 7,7 (K) et on sait que 7 (K) est stable par différence et par produit matriciel.

3. Morphismes d’anneaux

Définition - Morphisme d’anneaux
Soient A, A’ des anneaux. On dit que f : A — A’ est un morphisme d’anneaux si

o f(la) = 1a,
o Ve,ye A, fle+y) = f(z)+ f(y),
o Vx,ye A, f(zy) = f(z) f(y).

Si f est un morphisme d’anneaux bijectif, on dit que f est un isomorphisme, et si de plus A = A’, on dit que f
est un automorphisme.

Exemples.
— L’application f : z — Z est un morphisme d’anneaux de C dans C.
Onal=1,etonsait quesizz eC,alors 242 =2+ Zet 22/ = 2Z.
— Si P e GL,,(K), alors I'application ¢p : A — PAP~! est un morphisme d’anneaux de .#,(K) dans ., (K).

On a ¢p(I,) = I,, et si A, B € #,(K), alors pp(A+ B) = PAP™' + PBP~! = pp(A) + pp(B), et
¢op(AB) = PAP7'PBP~! = op(A) pp(B).

Ces deux exemples sont en fait des automorphismes d’anneaux.
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Théoréme - Propriétés des morphismes d’anneaux

— Si f: A— A’ est un morphisme d’anneaux, alors :

o f(04) =04,
o pour tout z € A, f(—x) =—f(z)
o pour tout € A%, f(z~=1) = f(z)~ L.

— La composition g o f de deux morphismes d’anneaux f : A — A’ et g : A/ — A” est un morphisme
d’anneaux de A dans A”.

— L’image réciproque d’'un sous-anneau de A’ est un sous-anneau de A, 'image directe d’un sous-anneau de
A est un sous-anneau de A’.

— Si f: A— A’ est un morphisme d’anneaux, on définit comme pour les morphismes de groupes :

Im f = f(A) = {f(z), ve A}, Kerf = f7({0a}) = {z€ 4, f(z) =0a}.

On a toujours : f est surjectif si et seulement si Im f = A’ et f est injectif si et seulement si Ker f = {04}.

Démonstration. Les preuves sont similaires aux preuves des résultats sur les morphismes de groupes, et sont laissées
en exercice. O

/A Le noyau d’un morphisme d’anneau est toujours défini en choisissant ’élément neutre 04 (pour la loi +).

4. Corps

Définition - Corps
I On appelle corps tout anneau commutatif non nul tel que tout élément non nul est inversible.

Exemple. Q, R et C sont des corps. Z n’est pas un corps.
Remarques.

— Si K est un corps, on note K* = K\{Og}. On a alors K* = K*.
— Sixz e K et ye K*, alors on note % = y~lz = 2y~ !. Cette notation n’est pas ambigué car K est commutatif.

On retiendra qu’un corps est un anneau dans lequel on peut diviser par tout élément, sauf 0.
— Tout corps K est integre : si 2,y € K et xy = O avec x = Ok, alors y = 2 = Og.

On introduit la notion de sous-corps, similaire a la notion de sous-anneau, et on donne une caractérisation analogue
a celle rencontrée pour les sous-anneaux.

Définition - Sous-corps
Soient (K, +, x) un anneau et L une partie de K. On dit que L est un sous-corps de A si
o L est stable par les lois + et X,
o lgel,
o (L,+, x) est un corps.

" Théoréme - Caractérisation des sous-corps
Si K est un corps et L < K, alors L est un sous-corps de K si et seulement si
o lgel,
o L est stable par différence : Vz,ye L, t —ye€e L,
o L est stable par quotient : V(z,y) € L x L*, % e L.

Remarque. Un sous-corps L de K est donc un sous-anneau de K stable par passage & l'inverse : Vx e L*, = !¢ L.
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