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Chapitre 13

Groupes, anneaux, corps

I Lois de composition interne
Dans tout le chapitre, E désigne un ensemble non vide, et K désigne R ou C.

1. Définitions

On appelle loi de composition interne, ou loi interne sur E une application ‹ : E ˆ E Ñ E. On appelle alors
magma et on note pE, ‹q l’ensemble E muni de sa loi de composition interne ‹.

Définition - Loi de composition interne, magma

Remarques.

– Si pE, ‹q est un magma, on note x ‹ y l’image de px, yq P E2 par l’application ‹.
– Les lois internes sont souvent notées de manière additive : x ` y ou de manière multiplicative : x ˆ y ou xy. Il

s’agit d’un choix arbitraire qui dépend du contexte, la seule contrainte est de se tenir au choix effectué.

Exemples.

– L’addition ` et la multiplication ˆ sont des lois internes sur les ensembles N, Z, Q, R, C.
– L’addition est une loi interne sur Mn,ppKq, le produit matriciel est une loi interne sur MnpKq.
– L’addition ` et la multiplication ˆ sur F pE,Rq sont des lois internes, on dit qu’elles sont induites par les lois

` et ˆ sur R.
– La composition ˝ est une loi interne sur F pE,Eq.
– L’union Y et l’intersection X sont des lois internes sur l’ensemble PpEq des parties de E.

Soit pE, ‹q un magma. On dit que la loi ‹ est :

– commutative si : @x, y P E, x ‹ y “ y ‹ x.
– associative si : @x, y, z P E, x ‹ py ‹ zq “ px ‹ yq ‹ z.

Définition - Commutativité, associativité

Remarque. Si ‹ est associative, on omet les parenthèses, qui deviennent inutiles : x ‹ y ‹ z “ x ‹ py ‹ zq “ px ‹ yq ‹ z.
En notation multiplicative, on note xn “ x ‹ . . . ‹ x

loooomoooon

n termes

, et en notation additive, on note nx “ x ‹ . . . ‹ x
loooomoooon

n termes

.

Exemples.

– Les lois ` et ˆ sur R sont commutatives et associatives.
– Les lois ` et ˆ sur MnpKq sont associatives, mais ˆ n’est pas commutative.
– La loi ˝ sur F pE,Eq est associative mais non commutative.
– La soustraction ´ est une loi interne sur Z qui est non associative et non commutative (on a par exemple
3 ´ p2 ´ 1q ­“ p3 ´ 2q ´ 1 et 2 ´ 1 ­“ 1 ´ 2).

Si ‹ et ˛ sont deux lois internes sur E, on dit que ‹ est distributive par rapport à ˛ si

@x, y, z P E, x ‹ py ˛ zq “ px ‹ yq ˛ px ‹ zq et py ˛ zq ‹ x “ py ‹ xq ˛ pz ‹ xq.

Définition - Distributivité

Exemples.

– Dans R, la loi ˆ est distributive par rapport à la loi `.
– Dans PpEq, la loi Y est distributive par rapport à la loi X, et la loi X distributive par rapport à la loi Y.
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Si pE, ‹q est un magma et e P E, on dit que e est un élément neutre de pE, ‹q (ou pour la loi ‹) si

@x P E, x ‹ e “ e ‹ x “ x.

S’il existe un élément neutre pour la loi ‹, alors il est unique.

Définition-théorème - Elément neutre

Démonstration. Si e et e1 sont deux éléments neutres pour ‹, alors e “ e ‹ e1 “ e1, donc e “ e1.

Remarque. S’il existe, l’élément neutre est souvent noté 0E ou 0 en notation additive, et 1E ou 1 en notation
multiplicative.

Exemples.

1. pR,`q admet 0 pour élément neutre, et pR,ˆq admet 1 pour élément neutre.
2. pF pE,Rq,`q a pour élément neutre la fonction nulle, et pF pE,Rq,ˆq a pour élément neutre la fonction constante

égale à 1.
3. pMnpKq,`q a pour élément neutre la matrice nulle, et pMnpKq,ˆq a pour élément neutre In.
4. pF pE,Eq, ˝q a pour élément neutre la fonction IdE .

Exercice 1. Quel est l’élément neutre de pPpEq,Yq ? L’élément neutre de pPpEq,Xq ?

Si pE, ‹q a pour élément neutre e, on dit que x P E est inversible s’il existe un élément y P E appelé inverse de
x tel que x ‹ y “ y ‹ x “ e.
Si pE, ‹q est associatif et si x P E admet un inverse, alors il est unique. On le note x´1 (si la notation est
multiplicative), ou ´x (si la notation est additive).

Définition-théorème - Élément inversible, inverse

Démonstration. Si y et z sont des inverses de x, alors par associativité y ‹ x ‹ z “ py ‹ xq ‹ z “ e ‹ z “ z, et
y ‹ x ‹ z “ y ‹ px ‹ zq “ y ‹ e “ y, donc y “ z.

Remarque. On peut construire un exemple de magma non associatif tel qu’un élément a deux inverses : si E est un
ensemble à trois éléments 1E , a, b et si la loi interne ‹ est décrite par

‹ 1E a b
1E 1E a b
a a 1E 1E
b b 1E 1E

alors a ‹ a “ a ‹ b “ b ‹ a “ 1E , donc a et b sont deux inverses distincts de E. Comme pa ‹ aq ‹ b “ b et a ‹ pa ‹ bq “ a,
la loi ‹ n’est en effet pas associative.

Exemples.

– Dans pZ,`q, tout élément est inversible, mais pas dans pN,`q ou seul 0 admet un inverse.
– Dans pR‹,ˆq, tout élément est inversible, mais pas dans pR,ˆq où 0 n’est pas inversible.
– Dans pMnpKq,`q, tout élément est inversible, mais dans pMnpKq,ˆq, seules les matrices de A P GLnpKq ad-

mettent un inverse pour la loi ˆ, il s’agit bien sûr de la matrice inverse A´1.
– Dans pF pE,Rq,`q tout élément est inversible, mais dans pF pE,Rq,ˆq, seules les fonctions qui ne s’annulent

pas admettent un inverse.
– Dans pF pE,Eq, ˝q, le éléments inversibles sont les fonctions f bijectives, d’inverse leur bijection réciproque f´1.

Si pE, ‹q est un magma associatif possédant un élément neutre 1E , alors

– Si x P E est inversible, alors x´1 est inversible et px´1q´1 “ x.
– Si x P E est inversible et n P N, alors xn est inversible, et pxnq´1 “ px´1qn. On note cet élément x´n.
– Si x, y P E sont inversibles, alors x ‹ y est inversible et px ‹ yq´1 “ y´1 ‹ x´1.

Théorème - Inverse et opérations
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Remarques.

– En notation additive : – si x est inversible alors ´x l’est aussi et ´p´xq “ x,
– si x est inversible alors nx l’est aussi et ´pnxq “ np´xq, qu’on note ´nx.

– On retrouve par exemple les propriétés déjà rencontrées pour pMnpKq,ˆq.

Démonstration. Ce résultat a déjà été montré dans le cas de MnpKq. Les preuves sont les mêmes dans ce cas plus
général.

Si pE, ‹q est un magma et F Ă E, on dit que F est stable par ‹ si

@x, y P F, x ‹ y P F.

Dans ce cas, pF, ‹q est un magma. On dit que la loi ‹ induit une loi interne sur F .

Définition - Partie stable

Exemples.

– Dans pR,ˆq : R` est une partie stable par ˆ, mais pas R´.
– Dans pMnpKq,`q : les ensembles SnpKq, T `

n pKq, DnpKq sont stables par `, mais pas GLnpKq.
– Dans pMnpKq,ˆq : les ensembles SnpKq, T `

n pKq, DnpKq, GLnpKq sont stables par ˆ.
– Dans F pR,Rq, ˝q : l’ensemble des fonctions croisantes est stable par ˝.

II Structure de groupe
1. Groupes

On dit qu’un magma associatif pG, ‹q est un groupe si :

˛ G possède un élément neutre,
˛ tout élément de G est inversible.

Si de plus ‹ est commutative, on dit que pG, ‹q est un groupe commutatif, ou abélien.

Définition - Groupe

Remarque. Si pG, .q est un groupe et x P G, alors toutes ses puissances appartiennent à G : pour tout n P Z, xn P G.
En notation additive, ceci s’écrit : si pG,`q est un groupe et x P G, alors pour tout n P Z, nx P G.

Exemples.

1. pC,`q, pR,`q, pQ,`q, pZ,`q sont des groupes abéliens.
2. pC‹,ˆq, pR‹,ˆq et pQ‹,ˆq sont des groupes abéliens. En revanche, pC,ˆq, pR,ˆq, pQ,ˆq ne sont pas des groupes :

0 n’est pas inversible dans ces magmas.
3. pZ‹,ˆq n’est pas un groupe : par exemple, 2 n’a pas d’inverse dans Z‹.
4. pMnpKq,`q est un groupe, mais pMnpKq,ˆq n’en est pas un (par exemple, la matrice nulle n’est pas inversible).

Plus généralement, pMn,ppKq,`q est un groupe.
5. pGLnpKq,ˆq est un groupe : si A P GLnpKq, alors A possède un inverse dans GLnpKq, qui est A´1.

pGLnpKq,`q n’est pas un groupe : on a vu que GLnpKq n’est pas stable par la loi `.
6. L’ensemble des bijections de E dans E, noté SE ou SpEq, forme un groupe pour la loi ˝, qu’on appelle groupe

symétrique de E et qu’on note pSE , ˝q.

En effet, si f P SE , alors sa bijection réciproque f´1 est encore un élément de SE , donc tout élément
de SE admet un inverse dans SE .

Remarque. Il arrive fréquemment qu’on omette de préciser la loi du groupe lorsque le contexte est clair : par exemple,
le groupe C désigne le groupe pC,`q, et le groupe C‹ désigne le groupe pC‹,ˆq. De même pour R,Q,Z,R‹,Q‹, mais
aussi MnpKq, GLnpKq. D’après ce qui précède, il n’y a pas d’ambiguïté.
Lorsqu’on travaille avec un groupe G quelconque de manière théorique, il arrive qu’on ne précise pas la loi, et qu’on
utilise par défaut la notation multiplicative : on note 1G ou 1 l’élément neutre de G et xy pour x ‹ y.
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Si pG, ‹q est un groupe, alors tout élément x P G est régulier, c’est-à-dire :

@a, b P G, x ‹ a “ x ‹ b ñ a “ b et a ‹ x “ b ‹ x ñ a “ b.

On dit aussi qu’on peut simplifier (à gauche ou à droite) par tout élément de G.

Définition-théorème - Groupe et régularité

Démonstration. Soient a, b P G tels que x ‹ a “ x ‹ b. Comme x est inversible dans G, d’inverse noté x´1, on a
x´1 ‹ x ‹ a “ x´1 ‹ x ‹ b, donc a “ b. De même pour le deuxième cas.

Si pG, ‹q et pH, ˛q sont des groupes, alors pG ˆ H, ‚q est un groupe, où la loi ‚ est donnée par :

@px, yq, px1, y1q P G ˆ H, px, yq ‚ px1, y1q “ px ‹ x1, y ˛ y1q.

On dit que GˆH est le groupe produit associé à G et H. On généralise cette définition au produit G1 ˆ . . .ˆGn

de n groupes G1, . . . , Gn.

Définition-théorème - Groupe produit

Démonstration. Il est clair que ‚ est une loi interne associative sur G. Par ailleurs, si on note 1G et 1H les éléments
neutres respectifs de G et H, alors p1G, 1Hq est élément neutre de GˆH. Pour finir, si px, yq P GˆH, alors en notant
x´1 (resp. y´1) l’inverse de x dans G (resp. de y dans H), le couple px´1, y´1q est inverse de px, yq dans G ˆ H.

Exemple. La loi du groupe produit R ˆ R est donnée par : ppx, yq, px1, y1qq ÞÑ px ` x1, y ` y1q.

2. Sous-groupes

Soient pG, ‹q un groupe et H une partie de G stable par ‹. On dit que H est un sous-groupe de G si pH, ‹q est
lui-même un groupe.

Définition - Sous-groupe

Exemples.

1. Un groupe G a toujours pour sous-groupe teu (ou e désigne l’élément neutre de G), et G. On dit que ces deux
sous-groupes sont triviaux.

2. Z est un sous-groupe de R, et R est un sous-groupe de C (muni de la loi `), R‹ est un sous-groupe de C‹ (muni
de la loi ˆ).

Si pG, .q est un groupe et H Ă G, alors :

H est un sous-groupe de G ô

$

&

%

1G P H
H est stable par la loi de G : @x, y P H, xy P H
H est stable par passage à l’inverse : @x P H, x´1 P H

ô

"

1G P H
@x, y P H, xy´1 P H

Théorème - Caractérisation des sous-groupes

Remarques.

– Le résultat ci-dessus est écrit en notation multiplicative. En notation additive, ceci devient : H Ă G est un
sous-groupe de pG,`q si et seulement si 0G P H et pour tous x, y P H, x ´ y P H.

– On peut remplacer la vérification de 1G P H par : “H est non vide”.

Démonstration. On montre que H est un sous-groupe de G ssi 1G P H et @x, y P H, xy´1 P H, le reste est analogue.

– Si H est un sous-groupe de G, notons 1H son élément neutre. On a alors 1H1G “ 1H car 1H P G, et 1H1H “ 1H ,
donc 1H1G “ 1H1H , ce qui donne 1H “ 1G car 1H est régulier.
Soient x, y P H. On note y´1

G l’inverse de y dans G et y´1
H son inverse dans H. On a y´1

G “ y´1
H car y est régulier

dans G et y´1
G y “ y´1

H y “ 1H “ 1G. Ainsi, par stabilité de H par la loi de G, on a xy´1 P H.
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– Supposons que 1G P H et @x, y P H, xy´1 P H. Si y P H, alors 1Gy
´1 P H, donc y´1 P H, donc y est inversible

dans H. Par ailleurs, si x, y P H, alors xy “ xpy´1q
´1

P H, donc H est stable par la loi de G. Comme par ailleurs
la loi de G est associative, on en déduit que pH, .q est un groupe.

Remarques.

– Dans la pratique, on utilisera toujours le résultat ci-dessus pour montrer que H est un sous-groupe de G.
– Lorsqu’on souhaite montrer que pH, .q est un groupe, il sera souvent très utile de montrer qu’il s’agit d’un

sous-groupe d’un groupe pG, .q qu’on identifiera. De cette manière, on pourra s’affranchir de la vérification de
l’associativité, l’élément neutre et l’existence d’inverse : ces propriétés seront directement héritées de celles de la
loi . sur G.

Exemples.

1. Si n P N, alors nZ “ tkn, k P Zu est un sous-groupe de Z (muni de la loi `).

En effet, on a d’abord nZ Ă Z. Par ailleurs, 0 est un multiple de n, donc 0 P nZ, et si x, y P nZ, alors
x ´ y est un multiple de n donc x ´ y P nZ.

2. Si a, b P Z, alors aZ ` bZ “ tau ` bv, u, v P Zu est un sous-groupe de Z.

Si on note G “ aZ ` bZ, alors on a 0 P G et si n,m P G, il existe k, l, k1, l1 P Z tels que n “ ka ` lb,
m “ k1a ` l1b, donc n ´ m “ pk ´ k1qa ` pl ´ l1qb P G.

3. R‹
` est un sous-groupe de pR‹,ˆq.

4. L’ensemble U “ tz P C, |z| “ 1u est un sous-groupe de C‹ (muni de la loi ˆ).

En effet, on a U Ă C‹ et 1 P U. Par ailleurs, si z, z1 P U, alors |zz1´1| “
|z|

|z1| “ 1, donc zz1´1 P U.

5. Si I est un intervalle de R, alors C 0pI,Rq est un sous-groupe de pF pI,Rq,`q.

Exercice 2.

1. Montrer que S “ tz ÞÑ az ` b, pa, bq P C‹ ˆ Cu est un sous-groupe de SC (muni de la loi ˝).
2. Montrer que T “ tA P T `

n pKq, @i P J1, nK, ai,i ­“ 0u est un sous-groupe de GLnpKq (muni de la loi ˆ).

Si G est un groupe et H,H 1 sont des sous-groupes de G, alors H X H 1 est un sous-groupe de G.
Plus généralement, si pHiqiPI est une famille de sous-groupes de G, alors

Ş

iPI

Hi est un sous-groupe de G.

Théorème - Intersection de sous-groupes

Démonstration. Traitons le cas de deux sous-groupes, le cas général est identique. On a H X H 1 Ă G, 1G P H X H 1,
et si x, y P H X H 1, alors xy´1 P H et xy´1 P H 1 car H et H 1 sont des sous-groupes, donc xy´1 P H X H 1.

Exemple. Si a, b P Z, alors l’ensemble aZ X bZ des multiples communs à a et b est un sous-groupe de Z.

L’union de deux sous-groupes de G n’est pas un sous-groupe en général.
Par exemple, 2Z et 3Z sont des sous-groupes de Z, mais H “ 2ZY 3Z n’est pas un sous-groupe de Z : 2, 3 P H
mais 2 ` 3 R H.

On retiendra le résultat suivant, montré en TD : si H et H 1 sont des sous-groupes de G, alors H Y H 1 est un
sous-groupe de G si et seulement si l’un des sous-groupes H,H 1 est inclus dans l’autre.

Les sous-groupes de Z sont exactement les ensembles nZ, où n P N.
Théorème - Sous-groupes de Z

Démonstration. On sait déjà que les ensembles de la forme nZ sont des sous-groupes de Z. Si maintenant G est un
sous-groupe de Z, il s’agit de montrer que G est de la forme nZ pour n P N.

– Si G “ t0u, alors G “ 0Z.
– Si G ­“ t0u, alors il existe k ­“ 0 tel que k P G, et donc ´k P G. Ceci entraîne que GXN‹ est une partie non vide

de N. On pose alors n “ minG X N‹, et on va montrer que G “ nZ.
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– On a nZ Ă G : on sait que n P G, et comme G est stable par `, on a aussi kn P G pour tout k P Z.
– On a G Ă nZ : si x P G, on écrit x “ nq ` r la division euclidienne de x par n, on a alors r P J0, n ´ 1K.

Comme nq P nZ, on a aussi nq P G. Ainsi, r “ x ´ nq P G. Comme r P G X N et r ă n, on a a alors r “ 0,
et x P nZ.

Remarque. Soient a, b P Z.

˛ On retrouve le fait que aZ X bZ est de la forme mZ avec m P N, en tant que sous-groupe de Z. Nous avons déjà
vu d’ailleurs que aZ X bZ “ pa _ bqZ.

˛ On retrouve également que aZ ` bZ est de la forme dZ avec d P N, en tant que sous-groupe de Z. Nous avons
déjà vu d’ailleurs que aZ ` bZ “ pa ^ bqZ.

3. Morphismes de groupes

Soient pG, ‹q et pG1, ˛q deux groupes. On dit qu’une application f : G Ñ G1 est un morphisme de groupes si

@x, y P G, fpx ‹ yq “ fpxq ˛ fpyq.

Définition - Morphisme de groupes

Remarque. En notation multiplicative pour les deux groupes G, G1, ceci se récrit : @x, y P G, fpxyq “ fpxqfpyq.

Exemples.

– La fonction exp est un morphisme de groupes de pR,`q dans pR‹
`,ˆq.

– La fonction ln est un morphisme de groupes de pR‹
`,ˆq dans pR,`q.

– Si a P R, la fonction f : x ÞÑ ax définit un morphisme de groupes de pR,`q dans pR,`q.
– L’application φ : f ÞÑ

ş1

0
fptqdt définit un morphisme de groupes de pC 0pr0, 1s,Rq,`q dans pR,`q.

– L’application transposition f : A ÞÑ AJ définit un morphisme de groupes de MnpKq dans lui-même.
– L’application A ÞÑ trA définit un morphisme de groupes de MnpKq dans K.
– Si A P Mn,ppKq, alors l’application X ÞÑ AX définit un morphisme de groupes de Mp,1pKq dans Mn,1pKq.

Si f : G Ñ G1 est un morphisme de groupes, alors fp1Gq “ 1G1 et pour tout x P G, fpx´1q “ fpxq´1.

Théorème - Morphismes, éléments neutres et inverses

Démonstration. On a fp1Gq “ fp1G1Gq “ fp1Gqfp1Gq. En multipliant à droite par fp1Gq´1, on obtient 1G1 “ fp1Gq.
Si x P G, on a fpxqfpx´1q “ fpxx´1q “ 1G1 . En multipliant à gauche par fpxq´1, on obtient fpx´1q “ fpxq´1.

Remarque. Avec la notation additive, ceci d’écrit fp0Gq “ 0G1 , et pour tout x P G, fp´xq “ ´fpxq.

Soient f : pG, ‹q Ñ pG1, ˛q et g : pG1, ˛q Ñ pG2, ‚q des morphismes de groupes. Alors, g ˝ f : pG, ‹q Ñ pG2, ‚q est
un morphisme de groupes.

Théorème - Composition de morphismes

Démonstration. Soient x, y P G, on a gpfpx ‹ yqq “ gpfpxq ˛ fpyqq “ gpfpxqq ‚ gpfpyqq.

Soit f : G Ñ G1 un morphisme de groupes.

– L’image directe d’un sous-groupe de G est un sous-groupe de G1.
– L’image réciproque d’un sous-groupe de G1 est un sous-groupe de G.

Théorème - Image directe, image réciproque d’un sous-groupe

Démonstration. On choisit une notation multiplicative pour G et G1 pour plus de clarté.

– Soit H un sous-groupe, montrons que fpHq “ tfpxq, x P Hu est un sous-groupe de G1. On a tout d’abord
1G1 P fpHq car 1G P H et fp1Gq “ 1G1 . Ensuite, si y, y1 P fpHq, alors il existe x, x1 P H tels que y “ fpxq et
y1 “ fpx1q. Ainsi, yy1´1 “ fpxqfpx1q´1 “ fpxqfpx1´1q “ fpxx1´1q P fpHq.
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– Soit H 1 un sous-groupe de G1, montrons que f´1pH 1q “ tx P G, fpxq P H 1u est un sous-groupe de G. On a
fp1Gq “ 1G1 P H 1, donc 1G P f´1pH 1q. Par ailleurs, si x, x1 P f´1pH 1q, alors fpxq, fpx1q P H 1, donc fpxx1´1q “

fpxqfpx1q´1 P H 1, donc xx1´1 P f´1pH 1q.

4. Noyau et image d’un morphisme de groupes

Les cas particuliers suivants d’images directes et réciproques de sous-groupes joueront un grand rôle dans la suite.

Soient f : G Ñ G1 un morphisme de groupes et e1 l’élément neutre de G1. On appelle

– image de f , et on note Im f le sous-groupe fpGq “ tfpxq, x P Gu de G1,
– noyau de f , et on note Ker f le sous-groupe f´1pte1uq “ tx P G, fpxq “ e1u de G.

Définition - Image et noyau d’un morphisme

Exemples.

– L’application f : θ ÞÑ eiθ définit un morphisme de groupes de pR,`q dans pU,ˆq. On a :

˛ Im f “ tfpθq, θ P Ru “ teiθ, θ P Ru “ U,
˛ Ker f “ tθ P R, fpθq “ 0u “ t2kπ, k P Zu “ 2πZ.

– Si A P Mn,ppKq, on a vu que fA : X ÞÑ AX définit un morphisme de groupes de Mp,1pKq dans Mn,1pKq. Ainsi,

Ker fA “ f´1
A pt0n,1uq “ tX P Mp,1pKq, AX “ 0n,1u

On remarque que, dans ce cas, il s’agit exactement de la notion de noyau de la matrice A, rencontrée dans le
chapitre Matrices et systèmes linéaires.

Remarque. On peut alors montrer qu’un ensemble définit un sous-groupe en montrant qu’on peut le voir comme le
noyau ou l’image d’un morphisme de groupes.

Si f : G Ñ G1 un morphisme de groupes et e est l’élément neutre de G, alors

˛ f est surjectif si et seulement si Im f “ G1,
˛ f est injectif si et seulement si Ker f “ teu.

Théorème - Noyau, image, injectivité et surjectivité

Démonstration.

˛ Il s’agit de la définition de la surjectivité de l’application f : G Ñ G1.
˛ Supposons que f est injectif, et montrons Ker f “ teu. Comme e P Ker f , il suffit que montrer que Ker f Ă teu.

Si x P Ker f , alors fpxq “ e1 “ fpeq. Par injective, on a alors x “ e, ce qui conclut.
Réciproquement, si Ker f “ teu, on considère x, y P G tels que fpxq “ fpyq. On a alors fpxqfpyq´1 “ e1, donc
fpxy´1q “ e1 et xy´1 P Ker f . Ainsi, on a xy´1 “ e, ce qui donne x “ y.

Remarque. Nous avons choisi la notation multiplicative dans la preuve ci-dessus, mais nous aurions aussi bien pu
écrire le raisonnement en notation additive : si fpxq “ fpyq, alors fpxq´fpyq “ e1, donc fpx´yq “ e1, et x´y P Ker f .

Exemple. Le morphisme f : θ ÞÑ eiθ est surjectif, car Im f “ U, mais pas injectif, car Ker f ­“ t0u.

5. Isomorphismes, automorphismes

On dit qu’un morphisme de groupe f : G Ñ G1 est un isomorphisme de groupes si f est bijectif. On dit alors que
G et G1 sont des groupes isomorphes.
Dans le cas où G “ G1, on appelle automorphisme de G un isomorphisme f : G Ñ G. On note AutpGq l’ensemble
des automorphismes de G.

Définition - Isomorphisme de groupes, groupes isomorphes
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Exemple. Les groupes R et R‹
` sont isomorphes : la fonction exp : R Ñ R‹

` définit un isomorphisme du groupe R
dans le groupe R‹

`.

Soient f : G Ñ G1 et g : G1 Ñ G2 des isomorphismes de groupes.

– La composition g ˝ f est un isomorphisme de groupes de G dans G2.
– La réciproque f´1 est un isomorphisme de groupes de G1 dans G.

Théorème - Isomorphismes et composition, réciproque

Démonstration.

– On sait qu’une composée de morphismes est un morphisme, et qu’une composée de bijections est une bijection.
– On sait déjà que f´1 est une bijection, il reste à voir que c’est un morphisme. Soient y, y1 P G1 et x, x1 P G

tels que fpxq “ y et fpx1q “ y1. On a alors fpxx1q “ fpxqfpx1q “ yy1, donc xx1 “ f´1pyy1q. Ceci entraîne que
f´1pyy1q “ xx1 “ f´1pyqf´1py1q, donc f´1 est un morphisme.

Si G est un groupe, alors pAutpGq, ˝q est un groupe. On parle du groupe des automorphismes de G.

Théorème - Groupe des automorphismes

Démonstration. pAutpGq, ˝q est un sous-groupe de pSpGq, ˝q. En effet, IdG P AutpGq, et σ ˝ τ´1 P AutpGq pour tous
σ, τ P AutpGq : τ´1 est un isomorphisme, donc σ ˝ τ est un isomorphisme de G dans G.

Exercice 3. Déterminer tous les automorphismes de Z.

III Structure d’anneau, structure de corps
1. Définitions

Si A est un ensemble muni de deux lois de composition internes ` et ˆ, on dit que pA,`,ˆq est un anneau si

– pA,`q est un groupe abélien,
– la loi ˆ est associative, distributive par rapport à `, et A admet un élément neutre pour ˆ.

Si de plus la loi ˆ est commutative, on dit que A est un anneau commutatif.

Définition - Anneau

Exemples.

1. pZ,`,ˆq, pQ,`,ˆq, pR,`,ˆq, pC,`,ˆq sont des anneaux commutatifs.
2. pF pE,Rq,`,ˆq est un anneau commutatif.
3. pMnpKq,`,ˆq est un anneau, qui est non commutatif si n ě 2.

Remarques.

– Il arrive fréquemment qu’on ne précise pas les lois d’un anneau lorsque le contexte est clair : on évoquera par
exemple l’anneau Z, l’anneau MnpKq.

– Dans un anneau A, l’élément neutre pour ` est généralement noté 0A ou 0, et l’élément neutre pour ˆ est
généralement noté 1A ou 1.

– Si A est un anneau, a P A et n P N, les éléments na et an existent, et désignent respectivement a ` a ` . . . ` a
et a ˆ a ˆ . . . ˆ a.

– Tout élément a d’un anneau a toujours un inverse pour la loi `, noté ´a, mais n’a pas toujours un inverse pour
la loi ˆ. Lorsqu’on parle d’un élément inversible d’un anneau, on l’entend donc toujours pour la loi ˆ.

Soient A un anneau et a, b P A. On a :

˛ 0A ˆ a “ a ˆ 0A “ 0A.

Théorème - Règles de calcul dans un anneau
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˛ p´aq b “ a p´bq “ ´ab et p´aq p´bq “ ab. Plus généralement pour n P Z, pnaq b “ a pnbq “ nab.

Démonstration.

˛ On a 0A ˆa “ p0A `0Aq ˆa “ 0A ˆa`0A ˆa par distributivité. Il suffit de simplifier 1 par 0A ˆa, et on obtient
0A ˆ A “ 0A.

˛ On a p´a ` aqb “ 0Ab “ 0A d’après le point précédent. Ainsi, par distributivité, on a p´aqb ` ab “ 0A, ce qui
donne p´aqb “ ´ab. L’autre cas est similaire. On déduit de ceci que p´aqp´bq “ ´pap´bqq “ ´p´abq “ ab.
On en déduit le dernier point par récurrence immédiate le résultat pour n P N, puis ce sui précède montre qu’il
est vrai pour n P Z.

Remarques.

– En particulier, p´1Aq a “ a p´1Aq “ ´a, et p´1Aq2 “ 1A.
– Il est possible d’avoir 1A “ 0A. Dans ce cas, on a A “ t0Au : en effet, on a alors a “ 1Aa “ 0Aa “ 0A pour tout
a P A. L’anneau A est alors appelé l’anneau nul.

Si A est un anneau et a, b P A commutent, i.e. ab “ ba, alors pour tout n P N,

pa ` bqn “

n
ÿ

k“0

ˆ

n

k

˙

ak bn´k, an ´ bn “ pb ´ aq

n´1
ÿ

k“0

ak bn´1´k.

Théorème - Formule du binôme, formule de Bernoulli

Démonstration. Mêmes preuves que dans R.

Soit A un anneau, on note Aˆ l’ensemble des éléments inversibles de A. pAˆ,ˆq est un groupe, appelé groupe
des inversibles de A.

Théorème et définition - Groupe des inversibles d’un anneau

Démonstration. On sait déjà que ˆ est associative, et l’élément neutre 1A appartient à Aˆ car 12A “ 1A. Par ailleurs,
ˆ est une loi interne sur Aˆ car un produit d’éléments inversibles de A est également inversible. Pour finir, tout
élément de Aˆ est inversible dans Aˆ : si x P Aˆ, alors x´1 P Aˆ.

Exemples. ˛ Cˆ “ C‹, Rˆ “ R‹,
˛ Zˆ “ t´1, 1u,
˛ F pR,Rqˆ “ tf : R Ñ R, f ne s’annule pasu.

On dit qu’un anneau A non nul est intègre si

@a, b P A, ab “ 0A ñ pa “ 0A ou b “ 0Aq.

Autrement dit, le produit de deux éléments non nuls est non nul.

Définition - Anneau intègre

Exemples. – Les anneaux Z,Q,R,C sont intègres.
– L’anneau MnpKq n’est pas intègre si n ě 2 : par exemple, E1,n

2 “ 0MnpKq.

Exercice 4. L’anneau F pr0, 1s,Rq est-il intègre ?

Si pA,`,ˆq et pB,`,ˆq sont deux anneaux, alors pAˆB,`,ˆq est un anneau, où les lois de AˆB sont données
par :

@px, yq, px1, y1q P A ˆ B, px, yq ` px1, y1q “ px ` x1, y ` y1q et px, yq px1, y1q “ pxx1, yy1q.

Définition-théorème - Anneau produit

1. pA,`q est un groupe, donc on peut simplifier par tout élément.
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Exemple. Z2 est un anneau, muni des lois : px, yq ` px1, y1q “ px ` x1, y ` y1q, et px, yq px1, y1q “ pxx1, yy1q.

2. Sous-anneaux

De même que pour les groupes, nous allons introduire la notion de sous-anneaux. Ici encore, il sera plus commode
pour montrer qu’un ensemble est un anneaux de l’identifier comme sous-anneau d’un anneau de référence.

Soient pA,`,ˆq un anneau et B une partie de A. On dit que B est un sous-anneau de A si

˛ B est stable par les lois ` et ˆ,
˛ 1A P B,
˛ pB,`,ˆq est un anneau.

Définition - Sous-anneau

Exemples. Z est un sous-anneau de Q, qui est un sous-anneau de R, qui est un sous-anneau de C.

Si A est un anneau et B Ă A, alors B est un sous-anneau de A si et seulement si

˛ 1A P B,
˛ B est stable par différence : @x, y P B, x ´ y P B,
˛ B est stable par produit : @x, y P B, xy P B.

Théorème - Caractérisation des sous-anneaux

Démonstration. La preuve est analogue à celle pour les groupes, et est laissée en exercice.

Exemples.

– Si I est un intervalle de R, pC kpIq,Rq est un sous-anneau de F pI,Rq.

En effet, la fonction x P I ÞÑ 1 est bien de classe C k, et on sait que C kpI,Rq est stable par différence
et par produit.

– L’ensemble T `
n pKq des matrices triangulaires supérieures de MnpKq est un sous-anneau de MnpKq.

En effet, In P T `
n pKq et on sait que T `

n pKq est stable par différence et par produit matriciel.

3. Morphismes d’anneaux

Soient A,A1 des anneaux. On dit que f : A Ñ A1 est un morphisme d’anneaux si

˛ fp1Aq “ 1A1 ,
˛ @x, y P A, fpx ` yq “ fpxq ` fpyq,
˛ @x, y P A, fpxyq “ fpxq fpyq.

Si f est un morphisme d’anneaux bijectif, on dit que f est un isomorphisme, et si de plus A “ A1, on dit que f
est un automorphisme.

Définition - Morphisme d’anneaux

Exemples.

– L’application f : z ÞÑ z̄ est un morphisme d’anneaux de C dans C.

On a 1̄ “ 1, et on sait que si z, z1 P C, alors z ` z1 “ z̄ ` z̄ et zz1 “ zz̄.

– Si P P GLnpKq, alors l’application φP : A ÞÑ PAP´1 est un morphisme d’anneaux de MnpKq dans MnpKq.

On a φP pInq “ In, et si A,B P MnpKq, alors φP pA ` Bq “ PAP´1 ` PBP´1 “ φP pAq ` φP pBq, et
φppABq “ PAP´1PBP´1 “ φP pAqφP pBq.

Ces deux exemples sont en fait des automorphismes d’anneaux.
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– Si f : A Ñ A1 est un morphisme d’anneaux, alors :

˛ fp0Aq “ 0A1 ,
˛ pour tout x P A, fp´xq “ ´fpxq

˛ pour tout x P Aˆ, fpx´1q “ fpxq´1.

– La composition g ˝ f de deux morphismes d’anneaux f : A Ñ A1 et g : A1 Ñ A2 est un morphisme
d’anneaux de A dans A2.

– L’image réciproque d’un sous-anneau de A1 est un sous-anneau de A, l’image directe d’un sous-anneau de
A est un sous-anneau de A1.

– Si f : A Ñ A1 est un morphisme d’anneaux, on définit comme pour les morphismes de groupes :

Im f “ fpAq “ tfpxq, x P Au, Ker f “ f´1pt0A1 uq “ tx P A, fpxq “ 0A1 u.

On a toujours : f est surjectif si et seulement si Im f “ A1 et f est injectif si et seulement si Ker f “ t0Au.

Théorème - Propriétés des morphismes d’anneaux

Démonstration. Les preuves sont similaires aux preuves des résultats sur les morphismes de groupes, et sont laissées
en exercice.

Le noyau d’un morphisme d’anneau est toujours défini en choisissant l’élément neutre 0A (pour la loi `).

4. Corps

On appelle corps tout anneau commutatif non nul tel que tout élément non nul est inversible.
Définition - Corps

Exemple. Q, R et C sont des corps. Z n’est pas un corps.

Remarques.

– Si K est un corps, on note K‹ “ Kzt0Ku. On a alors K‹ “ Kˆ.
– Si x P K et y P K‹, alors on note x

y “ y´1x “ xy´1. Cette notation n’est pas ambiguë car K est commutatif.
On retiendra qu’un corps est un anneau dans lequel on peut diviser par tout élément, sauf 0.

– Tout corps K est intègre : si x, y P K et xy “ 0K avec x ­“ 0K , alors y “
xy
x “ 0K .

On introduit la notion de sous-corps, similaire à la notion de sous-anneau, et on donne une caractérisation analogue
à celle rencontrée pour les sous-anneaux.

Soient pK,`,ˆq un anneau et L une partie de K. On dit que L est un sous-corps de A si

˛ L est stable par les lois ` et ˆ,
˛ 1K P L,
˛ pL,`,ˆq est un corps.

Définition - Sous-corps

Si K est un corps et L Ă K, alors L est un sous-corps de K si et seulement si

˛ 1K P L,
˛ L est stable par différence : @x, y P L, x ´ y P L,
˛ L est stable par quotient : @px, yq P L ˆ L‹, x

y P L.

Théorème - Caractérisation des sous-corps

Remarque. Un sous-corps L de K est donc un sous-anneau de K stable par passage à l’inverse : @x P L‹, x´1 P L.
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