MPSI — Mathématiques 2025-26

Chapitre 12

Arithmétique dans Z

| Divisibilité

1. Généralités

Définition - Multiples, diviseurs
Soient a,b € Z. On dit que a divise b et on note a | b s'il existe un entier k € Z tel que b = ka. On dit alors que b
est un multiple de a et a est un diviseur de b.

On note aZ = {ka, k € Z} les multiples de a.

" Théoréme - Propriétés de la relation de divisibilité

7. La relation de divisibilité est une relation d’ordre sur N.

i. Sia|beta|c, alors pour tous u,v € Z, a|bu + cv.
k|bk

=,

i. Sia|betc|d, alors ac|bd, et en particulier, a pour tout k € N.

S8

7

iv. Sim =0, alors a|b < ma|mb.

Démonstration.

7. Nous avons déja montré ce résultat dans le chapitre APPLICATIONS ET RELATIONS BINAIRES.
ii. Soient k,l € Z tels que b = ka et ¢ = la. Si u,v € Z, alors on a bu + cv = (ku + lv)a, donc a|bu + cv.
iti. Soient k,l € Z tels que b = ka et d = lc. Alors, on a bd = kl ac, donc ac| bd.
. Le sens direct est immédiat. S’il existe k € Z tel que mb = k ma, alors en divisant par m, on a b = ka. O

Remarque. La relation de divisibilité n’est pas une relation d’ordre sur Z, car elle n’est pas antisymétrique : si a,b € Z,
onaalb et bla < |a|=|b < a==b

2. Division euclidienne

Théoreme - Division euclidienne

Soient a € Z et b e N*. Il existe un unique couple (¢q,7) € Z x N tel que
a=bg+r et 0<r<hb.

Une telle écriture est appelée division euclidienne de a par b, et on appelle g le quotient et r le reste de la division
euclidienne.

Remarques.

— Si q est le quotient dans la division euclidienne de a par b, alors g = [%J

— On peut étendre ce résultat au cas ou b € Z* : il existe un unique couple (¢,7) € Z x N tel que a = bg + r et
0<r<]|bl.

Démonstration.

— FEzistence. On suppose a = 0, et on considére ’ensemble A = {k €N, a —kb>0}. Sike A, onak < kb < q,
donc A est majoré par a. Ainsi, A posséde un plus grand élément, qu’on note ¢. Par ailleurs, on a a—(¢+1)b < 0,
donc a — bg < b. Comme on a aussi a — bg = 0, on obtient le résultat en posant r = a — bq.

Si a < 0, on raisonne de la méme maniére en considérant m = min{k € N, a + kb > 0}, et on pose ¢ = —m. On
a alors a — bg > 0 et comme a + (m —1)b <0, on a a — bg < b.

Unicité. Supposons qu’il existe deux couples (q1,71) et (g2,72) comme dans I’énoncé. Alors bg; + r1 = bga + 72,
donc b(q1 — g2) = 19 — r1. Comme 71,73 € 0,0, on a —b < ry —r; <b, d’ott —1 < g2 — q1 < 1. Par conséquent,
Pentier q; — g2 est nul, ce qui donne g; = ¢o, puis r; = rs. O
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Remarque. On peut généraliser le résultat de la division euclidienne au cas ou b € Z*, de la maniére suivante : il
existe un unique couple (¢,7) € Z x Ntel que a = bg+r et 0 <r < |b|.

Corollaire - Caractérisation de la divisibilité dans Z

Siae€ZetbeZ*, alors b|a si et seulement si le reste dans la division euclidienne de a par b est nul.

Démonstration. Par unité du quotient et du reste dans la division euclidienne, le reste dans la division euclidienne
de a par b est nul si et seulement §’il existe g € Z tel que a = byq, c’est-a-dire si et seulement si b| a. O

3. Congruences

7

Définition - Congruence modulo un entier
Soient a,b,n € Z. On dit que a est congru & b modulo n s’il existe un entier k € Z tel que a = kn + b, autrement
dit : n divise a — b. On note alors a = b [n].

Remarques.

-Sia,neZ ona: nla < a=0[n].
— SiaeZetn e N* lereste r dans la division euclidienne de a par n est I'unique entier de [0,n — 1] tel que
a=r[n].

" Théoréme - Compatibilité avec les opérations
Soient a,a’,b,b’,n,m € Z.

(i) Sia=b[n]eta =V

(i) Sia=b[n]eta =V

(éi7) Sim =0, alors a = b [n] si et seulement si ma = mb [mn].

n], alors a +a’ =b+ ¥V [n].
n], alors aa’ = bb' [n]. En particulier, a® = b* [n] pour tout k € N.

—

Démonstration.
— (i) et (it). Sia=b[n]eta =10V [n], on considére k,l € Z tels que a = kb+ n et ' = b+ n. On a alors
a+da =(k+Db+ndonca+a =b+¥ [n], et ad’ = (kin + kb’ + 1b)n + bV, donc aa’ = bV’ [n].
— (4it). Le sens direct est clair, la réciproque s’obtient en divisant I’égalité ma = kmb + mn pour un entier k € Z
par m qui est non nul. O

Exemple. Pour tout n € N, 7 divise 23" — 1.

On remarque que 2* = 1 [7]. Ainsi, pour tout n € N, on obtient en élevant & la puissance n que 2°" =1 = [7],
cest-a-dire 25" — 1 =0 [7].

' Théoréme

La relation de congruence modulo un entier est une relation d’équivalence sur Z.

Démonstration. Sin € N et a,b,c € Z, on a pour commencer, si a = b [n], il existe k € Z tel que a = kn + b, donc

b= —kn+aetb=aln], donc = est symétrique. Ensuite, a = 0n + a, donc a = a [n], et = est réflexive. Par ailleurs,
sia=b[n]etb=cn], il existe k,l € Z tels que a = kn +bet b =In+ ¢, donc a = (k +1)n + ¢, donc a = ¢ [n], donc
= est transitive. O

4. Nombres premiers

Définition - Nombre premier
On dit qu’un entier p > 2 est premier si ses seuls diviseurs positifs sont 1 et p. Si p = 2 n’est pas premier, on dit
qu’il est composé. On note & I'ensemble des nombres premiers.

Exemple. Les entiers 2,3,5,7,11,13,17,19, 23 sont premiers.
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Remarque. Un entier n > 2 est composé si et seulement s’il posséde un diviseur d € [2,n — 1].

Théoreme - Factorisation premiére (existence)

Tout nombre entier n > 2 est un produit de facteurs premiers.

Démonstration. Montrons par récurrence forte que tout entier n > 2 est un produit de facteurs premiers.

— Initialisation. 2 est premier, donc un produit d’un seul facteur premier.

— Hérédité. Soit n > 2. On suppose que tout entier k € [2,n] est un produit de facteurs premiers, et on considére
Pentier n + 1. Soit n + 1 est premier, donc produit d’un seul facteur premier, soit il ne I'est pas, et s’écrit donc
n+1 = ab avec a,b € [2,n]. Par hypothése de récurrence, les entiers a et b s’écrivent comme facteurs de nombres
premiers, donc n + 1 = ab également, ce qui conclut. O

Remarque. Il y a aussi unicité de cette décomposition en produits de facteurs premiers, a ordre preés des facteurs.
Nous démontrerons ce résultat plus loin dans ce chapitre.

" Théoreme - 2 est infini

Il existe une infinité de nombres premiers.

Démonstration. Supposons qu’il existe un nombre fini r de nombres premiers, qu'on écrit p1,...,p.. On considere

alors ’entier n = p1...p,. + 1. Comme n n’est pas premier, il posséde un diviseur premier, qui est p; pour un certain

i € [1,r]. Par conséquent, p; divise n — p; ...p,, ce qui entraine que p; | 1, ce qui est contradictoire. O
Théoreme

Si un entier n = 2 n’est pas premier, alors il posséde un diviseur premier p < 4/n.

Démonstration. Soit n > 2 non premier. On sait que n admet un diviseur premier p. Si p < 4/n, alors le résultat
est prouvé. Sinon, on peut écrire n = pk avec k < 4/n. L’entier k posséde lui aussi un diviseur premier g qui vérifie
q < k < 4/n. Comme q est aussi un diviseur de n, ceci conclut. O

Le résultat ci-dessus permet d’obtenir un procédé algorithmique pour trouver tous les nombres premiers inférieurs a
un entier donné.

Crible d’Eratosthéne. Pour obtenir tous les nombres premiers inférieurs a un entier donné n, on peut procéder
de la maniere suivante.

— On commence par 2 dont on sait qu’il est premier, et on élimine tous les entiers de [2,n] qui sont multiples
de 2, et ne sont donc pas premiers.

— On s’intéresse au premier entier non éliminé, qu’on identifie comme étant premier (il n’a pas de diviseur
b)
premier qui lui est strictement inférieur), et on élimine tous ses multiples dans [2,n].

— On répeéte ainsi Popération tant qu’on considére les multiples d’entiers k tels que k < /n.

On aura alors sélectionné tous les nombres premiers de [2,n] car on a vu que tout nombre composé de cet
ensemble posséde un diviseur premier inférieur a 4/n. Le tableau ci-dessous donne I’exemple du cas n = 100.

2 3 5 7

11 13 17 19
23 29

31 37

41 43 47
53 59

61 67
71 73 79
83 89

97
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Il Plus grand diviseur commun, plus petit multiple commun

1. PGCD de deux entiers

Dans la suite, on note D, I’ensemble des diviseurs d’un entier a € Z.
Remarques.

— Pour tout a€ %, 1€ D, et —1€ D,.
— Sia =0, alors D, est majoré par |a| : pour tout k € Dy, il existe d € Z* tel que a = kd, on a donc |k| < |kd| = |a].
— OnaD; ={-1,1} et Dy = Z.

Définition-théoreme - PGCD
Si a,b € Z ne sont pas tous deux nuls, I’ensemble D, n D; des diviseurs communs a a et b admet un plus grand
élément appelé PGCD de a et b, qu'on note a A b. En d’autres termes, a A b = max(D, n Dy).

On convient par ailleurs que 0 A 0 = 0.

Démonstration. Si a = 0, ’ensemble D, n Dy, est majoré par |a| car D, lest. Il est par ailleurs non vide car il contient
1, donc admet un plus grand élément. Si a = 0, alors b = 0 et D, n D; est majoré par |b| donc la situation est
similaire. O

Exemples. —-Sia€Z,onaaArl=1etan0=]lal, dufait que D, n Dy = Dy, et D, " Dy = D,.
~Sia,beZ,onaanb=]lal A |b.
—Sia€Z et dest un diviseur positif de a, alors a A d =d : comme Dy < D,,ona D, n Dy = Dj.

Théoréme - PGCD d’un entier avec un nombre premier

Soient a € Z et p un nombre premier. Alors : — soit p|a et a A p = p,
—soit pfaetanp=1.

Démonstration. Sip|a, alors a A p = p d’aprés ce qui préceéde. Si maintenant p [a, comme D, = {—p,—1,1,p}, on a
D,nD,={-1,1},donca np=1. O

| Théoréme
Sia,breZeta=r|b],alors D, " Dy =Dy D, et doncanb=>bnar.

Démonstration. On peut écrire a = bg + r, o ¢ € Z. Ainsi, si d divise b et r, alors d divise a, ce qui donne
Dyn D, € D, n Dy. L’autre inclusion est obtenue de la méme maniére : si d divise a et b, alors d divise r = a—bq. [

Le résultat ci-dessus justifie I'utilisation de I'algorithme d’Euclide détaillé ci-dessous pour calculer le PGCD de deux
entiers.

Algorithme d’Euclide pour le calcul du PGCD.
Si a,be N, on note rg = a et r; = b, et on effectue la procédure suivante.
Pour ke N* :
— Si rp, = 0 : on effectue la division euclidienne de r;y_; par 7, et on note rgi; son reste. On a alors
Tp—1 = Tk+1 [Tk], ce qui entraine que rip41 < rg, €6 T A Tp—1 = Tkt1 A Tk
— Sirg =0, la procédure s’arréte, et a A b = rg_1.

Ainsi, a A b est le dernier reste non nul de la famille des restes successifs de ’algorithme d’Euclide.

Cas ot a,b € Z : comme a A b= |a| A |b], on se raméne au cas précédent.

Remarques.

— La propriété ri1 < ry sirp = 0, assure I'existence d’un entier kg tel que ry, = 0. En d’autres termes, I’algorithme
N
s’arrete.
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— Comme, rx_1 AT = Tk A Tgpy1 pour tout k, on a par récurrence immédiate que ry,_1 AT =19 AT1 = a A b.
Ainsi,
anb = rg_1 ATE, = Thy—1,

)

car ry, = 0. En d’autres termes, I'algorithme fournit le bon résultat. On dit que “a A b = ry_1 A 7”7 est un

invariant de boucle.

Exemple. Calcul du PGCD de 660 et 126 :

Ona660Al126=6: 660 = 126x 5+ 30
126 = 30 x4+[6]
30 = 6x5+0

L’algorithme peut s’écrire de la maniere suivante en PYTHON.

@ Algorithme d’Euclide.

def pgcd(a,b):

while (b!=0):
a,b = b,alb
return a

Une conséquence du résultat ci-dessus est que les diviseurs communs & a et b sont exactement les diviseurs de a A b,
ce qu’exprime le théoreme suivant.

| Théoréeme
Sia,beZ et d=a Ab,alors D, "D, = Dy.

Démonstration. En reprenant les notations de 'algorithme d’Euclide, on a rg_1 = r41 [rx] pour tout k. Ainsi, nous
avons vu que D, , nD,, = D, n D, ;1. Une récurrence immédiate montre alors que

Da me = D'r'kofl mDr;CO = Drkofla
ou ko est l'entier tel que r, = 0. Comme d = r, — 1, ceci conclut. O

Remarque. On retiendra que si d|a et d|b, alors d|a A b.

" Théoréme - Factorisation du PGCD
Sia,b,k € Z, alors (ka) A (kb) = |k|a A b.

Démonstration. Le cas k = 0 étant clair, on suppose que k£ = 0.

— On remarque que |k|a A b divise ka et kb, donc on sait que |k|a A b divise (ka) A (kb).

— Comme k divise ka et kb, on en déduit que k divise (ka) A (kb) : il existe d € Z tel que (ka) A (kb) = kd. Ainsi,
comme kd divise ka et kb et k = 0, on déduit que d|a et d|b, donc d|a A b. Finalement, kd divise |k|a A b.

Finalement, (ka) A (kb) et |k|a A b sont des entiers naturels qui se divisent mutuellement, ils sont égaux. O

2. Relations de Bézout

" Théoréeme - Relation de Bézout pour deux entiers

Soient a,b € Z. 1l existe u,v € Z tels que au + bv = a A b. Une telle relation est appelée relation de Bézout.

Remarque. Le couple (u,v) d’une relation de Bézout n’est pas unique, loin s’en faut! Par exemple 9 A 6 = 3, et
3=1x9+(-1)x6 =(=5) x9+8x6.

Démonstration. On reprend les notations de l'algorithme d’Euclide : 7g = a, 11 = b, et pour tout k € N* tel que
7, = 0, on écrit 71 = qr+17k + Tk+1, division euclidienne de r;_; par r,. On montre ensuite par récurrence double
que pour tout k € N, il existe ug, vy € Z tels que ri = uga + vib.
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— Initialisation : en posant ug = 1, vg = 0, u1 = 0 et v1 = 1, on a bien rg = uga + vob et 71 = uja + v1b.
— Hérédité : soit k € N*, on suppose qu’il existe up_1,vk_1,ur, V% € Z tels que rp_1 = ug_1a + vp_1b et
L = uga + vib. Ainsi,

Thal = Th—1 — Qh1Tk = (Uk—1 — Qrs1Uk) @ + (Vp—1 — Qrs1Vk) b.
On obtient le résultat en posant ug41 = Up—1 — 41Uk €6 Vi1 = Vp—1 — Qrt1Vk-
Comme on sait qu’il existe un entier ko tel que 7, =0 et a A b = rg,—1, on a donc a A b = ug,—1a + Vg,—1b. O

Remarque. La preuve ci-dessus fournit en fait des relations de récurrence permettant de calculer uy et v a chaque
étape. En ajoutant ce calcul a l'algorithme d’Euclide, ceci permet d’obtenir en plus une relation de Bézout. Ce nouvel
algorithme porte le nom d’algorithme d’Euclide étendu, et peut se schématiser de la maniere suivante.

Algorithme d’Euclide étendu.

On peut synthétiser la réalisation de 'algorithme d’Euclide étendu dans ‘ Tk ‘ 4k ‘ Uk ‘ Uk ‘
un tableau contenant les restes successifs, les quotients, ainsi que les entiers a 1 0
up et vg.

0 1

On commence par écrire rg, 71 et les premieres valeurs ug, v, u1,v1, puis [~ """ [ttt tomooo oo
on utilise les relations de récurrence.

Exemple. Recherche d’une relation de Bézout pour les entiers a = 323 et b = 119.

o 323 = 119 x 2 + 85, 323 1 0
o 119 = 84 x 1 + 34, 119 0 1
o 85 = 34 x 2+ 17, 85 | 2 | 1 | -2
© 34 =17x2+0. 34 1 -1 3
On obtient a A b= 17, et 17 = 3 x 323 — 8 x 119. 2 | 3 | -8

" Corollaire
Sia,beZ et d=a Ab, alors aZ + bZ = dZ.

Démonstration. On sait qu’il existe une relation de Bézout aug + bvg = d. Ainsi, d € aZ + bZ, donc les multiples de
d appartiennent a aZ + bZ. Autrement dit, dZ < aZ + bZ.

Sin € aZ + bZ, on peut écrire n = au + bv avec u,v € Z. Comme d|a et d|b, on a d|au + bv, donc au + bv € dZ. O

Remarque. La réciproque est vraie : si d € N est tel que aZ + bZ = dZ, alors d = a A b.

3. PGCD d’une famille finie d’entiers

On peut aisément généraliser la notion de PGCD a un nombre fini d’entiers.

Définition - PGCD d’un nombre fini d’entiers

Soient aq,...,a, € Z non tous nuls. On appelle PGCD de aq,...,a, le plus grand des diviseurs communs de
a1,...,0n, NOtE a1 A ... A a,. En d’autres termes, a1 A ... Aa, =maxD,, Nn...Nn D, .

On convient que 0 A ... A0 = 0.

Remarques.

— I1 découle de la définition que le PGCD est associatif : si a,b,c€ Z, alorsanbarc=a A (brc)=(anb)Ac
Ceci fournit un moyen de calculer le PGCD d’un nombre fini d’entiers en calculant une succession de PGCD de
deux entiers.

— De méme que pour le cas de deux entiers, on a Dy, ... Dy, = Dgin. nay-
— Le résultat de factorisation se généralise : si a1, ..., an,k € Z, alors (ka1) A ... A (kayn) = |klar A ... A ap.
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" Théoréme - Relation de Bézout pour une famille finie d’entiers

Soient aq,...,a, € Z. 1l existe uy,...,u, € Z tels que aquy + ... + aptly, = a1 A ... A a,. On dit qu'une telle
égalité est une relation de Bézout de aq, ..., ay,.

Exercice 1. Déterminer une relation de Bézout des entiers 4, 6 et 9.

4. PPCM

Définition-théoréme - PPCM de deux entiers

Soient a,b € Z*. L’ensemble aZ n bZ n N* admet un plus petit élément, appelé PPCM de a et b. On le note a v b.
En d’autres termes, a v b = min(aZ n bZ n N*).

On convient par ailleurs que a vb=0sia=0o0ub=0.

Démonstration. Si a,b € Z* sont non nuls, ’ensemble aZ n bZ n N* contient I’entier ab. En tant que sous-ensemble
non vide de N*, il admet bien un plus petit élément. O

Théoreme

Sia,beZ et m = avb,alors aZ nbZ = mZ. En d’autres termes, les multiples communs & a et b sont exactement
les multiples de a v b.

Démonstration. Sil'un des deux entiers a et b est nul, le résultat est clair : aZ n bZ = {0}.

Sia,b e Z*, on remarque que comme m est multiple de a et b, tous ses multiples le sont, autrement dit, mZ < aZ N bZ.
Montrons maintenant que aZ N bZ < m#. On raisonne par I’absurde et on suppose qu’il existe k € aZ n bZ tel que
k ¢ mZ. On écrit alors k = mgq + r la division euclidienne de k par m, on a ainsi r € [1,m — 1]. Comme k et mgq sont
des éléments de aZ N bZ, on en déduit que r € aZ N bZ, ce qui est une contradiction car 0 < r < min(aZ NbZNN*). O

Remarque. On retiendra que pour tout n € Z, si a|n et b|n, alors (a v b) |n.

Il Nombres premiers entre eux

Définition - Nombres premiers entre eux
I Soient a,b € Z. On dit que a et b sont premiers entre eux si a A b = 1.

Remarques.

— Les entiers a et b sont premiers entre eux si et seulement si D, n Dy = {—1,1}.
— Les entiers a et b sont premiers entre eux si et seulement s’ils n’ont aucun facteur premier en commun.

' Théoreme
a=dd
b=db

Soient a,b € Z non tous deux nuls et d = a A b. Il existe a’ et b’ premiers entre eux tels que {

Démonstration. Comme a, b sont non tous deux nuls, on a d = a A b = 0. On note a’, b’ les entiers tels que a = da’ et

b=db. Comme d = (da’) A (db'),onal=a Ab. O
Définition - Nombres premiers entre eux deux a deux — nombres premiers entre eux dans leur ensemble
Soient a,...,a, € Z.
— On dit que a1,...,a, sont premiers entre eux deux d deux si pour tous 4, j € [1,n] avec ¢ = j, a; A a; = 1.
— On dit que ay,...,a, sont premiers entre euxr dans leur ensemble si ay A ... A ap = 1.
A Si aq,...,a, sont premiers entre eux deux a deux, alors ils sont premiers entre eux dans leur ensemble, mais la

réciproque est fausse.

Par exemple, les nombres 2, 4 et 5 sont premiers entre eux dans leur ensemble (ils n’ont pas de diviseurs communs
autre que 1 et —1), mais ils ne sont pas premiers entre eux deux a deux, car 2 A 4 = 2.
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Théoreme - Théoréeme de Bézout

Soient a,b € Z. Les entiers a et b sont premiers entre eux si et seulement s’il existe u, v € Z tel que au + bv = 1.

Démonstration. Si a et b sont premiers entre eux, on sait qu’il existe u,v € Z tels que au + bv = a A b = 1.
Réciproquement, s’il existe u,v € Z tels que au + bv = 1, alors tout diviseur commun de a et b divise 1, ce qui donne
D, nDy={-1,1}, puisa n b= 1. O

Exemple. Pour tout n € Z, les entiers n et n + 1 sont premiers entre eux : (n + 1) —n = 1 est une relation de Bézout.

Remarque. Soient a € Z et n € N*. Si a A n = 1, alors le théoréeme de Bézout donne l'existence de u € Z tel que
au =1 [n]. On dira que a est inversible modulo n.

Exercice 2. Résoudre dans Z ’équation 3z = 2 [7].
Ona3x5—7x2=1 donc3x5=1[7] (on a inversé 3 modulo 7). Ainsi,
3x=2[7] & 5x3x=5x2[7] & z=3][T7].

Les solutions sont donc tous les entiers de la forme 7k + 3, ou k € Z.

Théoreme - Lemme de Gauss, lemme d’Euclide

— Lemme de Gauss. Soient a,b,c€ Z. Sia|bcet a Ab=1, alors a|c.
— Lemme d’Fuclide. Soient a,b € Z et p un nombre premier. Si p|ab, alors p|a ou p|b.

Démonstration.

— Par hypothese, il existe k € Z tel que bc = ka, et on une relation de Bézout : au + bv = 1 avec u,v € Z. En
multipliant par ¢, on obtient acu + bcv = ¢, donc acu + kav = ¢, soit a(cu + kv) = ¢, donc a|c.

— Comme p est premier, si p [a, alors p A a = 1. On peut donc appliquer le lemme de Gauss : comme p|ab, on a
p|b. O

Remarque. Une conséquence du lemme de Gauss est que si ma = mb [c] et m A ¢ = 1, alors a = b [¢]. En effet
ma =mb [c] se récrit ¢|m(a —b). Sim A ¢ =1, alors ¢|a — b, autrement dit a = b [c].

Alternativement, on peut aussi voir le résultat en remarquant que comme m A ¢ = 1, il existe un inverse u de m
modulo ¢. Ainsi mua = mub]c], i.e. a =b]c].

" Théoréme
Soient a,b,n € Z.

(i) Siaann=1letban=1,alorsabAn=1.
(it) Sianb=1, a|n et b|n, alors ab|n.

Démonstration.

(i) Raisonnons par ’absurde et supposons que ab et n ont un facteur premier p commun. Alors p|ab donc, par le
lemme d’Euclide, soit p|a, soit p|b. Dans le premier cas, p € D, n D,,, ce qui est impossible, et dans le second
cas, p € Dy n D, ce qui est également impossible.

(i) Par hypothese, il existe k,l € Z tels que n = ka = Ib. Ainsi, a|lb, et comme a A b = 1, le lemme de Gauss
entraine que a |, c’est-a-dire qu'il existe m € Z tel que | = ma. Par conséquent, n = mab, et ab|n. O

Remarque. Les deux résultats ci-dessus se généralisent aisément au cas d’'un nombre fini d’entiers, par des récurrences
assez immédiates : pour ay,...,ax,n € Z,

(i) sitag Am=...=ap An=1,alors (a;...a;) An=1,
(ii) si ay,...,a; premiers entre eux deux & deux, et a1 |n,...,ax|n, alors a; ... a, | n.
. . . p
Exemple. Si p est un nombre premier et k € [1,p — 1], alors p divise (k)

Démonstration. On remarque que k! (i) =p(p—1)...(p—k+1), donc p divise k! (2’) Comme p est premier
et k < p, les entiers i < k sont premiers avec p, donc leur produit également : k! A p = 1. Par le lemme de
Gauss, on en déduit donc que p| (%). O
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" Théoréme - Petit théoréme de Fermat
Si p est un nombre premier et n € Z, alors :

i. n? =n [p],
. sip An=1,alors n?~1 =1 p].

Démonstration.
7. On monte le résultat pour n € N en raisonnant par récurrence.

— Sin =0, onanP =0, donc le résultat est vrai.
— Soit n € N. On suppose que n? = n [p]. On a alors

p—1
(n+1)P = nP+ > <p)n’“+1 =n+1;= n+1[p,

p—1
car pour tout k € [1,p — 1], on sait que p divise (}), donc Y (})n* =0 [p].
k=1
SineZ,onan=r[p]avec r e [0,p—1]. Comme P = r [p], on a aussi n? = n [p].

7. Si de plus p A n = 1, alors il existe u € Z inverse de n modulo p, ¢’est-a-dire que nu = 1 [p], donc en multipliant
I'égalité précédente par u, on obtient nP~1 =1 [p]. O

IV Factorisation premiere

1. Décomposition en produit de facteurs premiers

Théoréme - Factorisation premiére

Sin e N avec n = 2, alors n s’écrit de maniére unique sous la forme

_ Q1 «
n = p]_ ...prr,

ou pi,...,pr sont des nombres premiers tels que p; < ... < p, et aq,...,a, € N*.

Démonstration.

— L’existence a été prouvée plus haut.

— Unicité. On suppose que n possede deux décompositions en produits de facteurs premiers comme dans I’énoncé.
Quitte & choisir des exposants nuls dans les décompositions, on peut supposer que les facteurs premiers sont les
mémes : o o B 5, .

n=p"...ppm =pit...phn, ou ai,...,op, Bi,...,0r €N

Yo = pf ‘b, ou a et b sont des produits de nombres premiers distincts de p;, donc

premiers avec p;. Par conséquent, on a p; A a = 1, puis pf A a = 1. Le lemme de Gauss donne alors piﬂ Clpgt,
pfi, et a; < ;. Finalement, «; = (;, ce qui conclut. O

Soit i € [1,7]. Onaalorsn = p

donc f; < a;. De méme, pi* A b =1, donc p;*

2. Valuation p-adique

Définition - Valuation p-adique
Soient p un nombre premier et n € Z*. On appelle valuation p-adigue de n et on note v,(n) le plus grand entier
k e N tel que p* | n.

Remarque. En d’autres termes, si p € & et n € N*, alors v,(n) est 'exposant de p dans la factorisation premiére de
n (en retenant un exposant nul si p ne divise pas n). On peut écrire la factorisation premiére de n € N* :

n = H p”p(”).

peP

On note que le produit est fini, car il existe un nombre fini de nombres premiers p tels que v,(n) = 0.
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Exemple. Comme 20 = 22 x 5, on a v2(20) = 2 et v5(20) = 1.

Remarque. SineZet pe &, alors: — v,(n) = « si et seulement si n s’écrit n = p®n/, ol p ne divise pas n/,
—vp(n) > 0 si et seulement si p|n.

" Théoréme - Valuation et produit

Sin,m € Z et p est un nombre premier, alors v,(nm) = vp(n) + vy(m).

Démonstration. On peut écrire n = p»™p’ et m = p?(™m/ ol p ne divise ni »’ ni m’. Ainsi, on obtient que
nm = p’»(M+u(Mp/m’ Par le lemme d’Euclide, p ne divise pas n'm/, ce qui assure que v,(nm) = v,(n) +v,(m). O

Remarque. Ceci fournit une maniére plus directe de présenter la preuve de l'irrationalité de 1/2 rencontrée dans le
chapitre RUDIMENTS DE LOGIQUE :

Supposons que v/2 € Q, et notons v/2 = %
va(p?) = v2(2¢?), c’est-a-dire 2v5(p) = 2v2(q) + 1, qui entraine 0 = 1 [2], il y a contradiction.

avec p,q € N*. On a alors p?> = 2¢2, ce qui entraine que

" Théoréme - Valuation et divisibilité

Sia,beZ, alors a|b si et seulement si pour tout p € &, v,(a) < v,(b).

Démonstration. Si a|b, il existe k € Z tel que b = ka. Ainsi, si p € &, on a vp(b) = v,(k) + vp(a) = vp(a). La
réciproque est claire en considérant les factorisations premieéres de a et b. O

Remarques.

— Sin > 2 a pour factorisation premiére n = p{* ...p%", alors ses diviseurs positifs sont exactement les entiers de
la forme p’' ... pPr avec B; < a; pour tout i € [1,7].
— On en déduit que le nombre de diviseurs positifs d’un entier n € N* est donné par

[T (wn) +1).

peEP
En effet, si la factorisation premiere de n s’écrit qu“ ™ .pq;)-”(n), il y a autant de diviseurs positifs que de choix
de r-uplets d’exposants (a1, ..., q,) avec a; € [0, vy, (n) — 1], c’est-a-dire (vp, (n) —1)...(vp,(n) — 1).

" Théoréme - Valuations et PGCD, PPCM

Si a, be Z*’ alorsa A b = H pmi“(")p(‘9‘)7"]z)(b))7 et avb= H pmax(vp(a),vp(b))'
peP peP

Démonstration. Pour tout p € &2, on note oy, = vp(a) et B, = v,(b).

— On considére un entier d dont on note la factorisation premiere d = ]_[pe »P. Onade D, n Dy si et seulement
si pour tout p € &, v, < a, et v, < B, c’est-a-dire 7, < min(a,, 5p), d’ott le résultat.

— De méme, si m € N a pour factorisation premieére m = Hpe » P77, alors m € aZ N bZ si et seulement si pour tout
PE D, Y = ay ety = By, est-a-dire y, > max(ay, 8,), d’olt le résultat. O

" Corollaire - Produit du PGCD et du PPCM

Sia,beZ,d=anbet m=avb,alors dn = |ab|.

Démonstration. Si a = 0 ou b = 0, alors m = 0, donc dm = |ab|. Si a,b € Z*, il suffit d’utiliser les factorisations
premiéres : [a| = [T e p™ et [b] = [T c0p

dm = H pmin(ap,ﬁp)erax(ap,ﬂp) _ n paerBp _ 1_[ pap H pﬁp _ |ab\ O
peP peP peP pe P

Exemple. Ona 300 = 22 x3x52% et 168 = 23 x3x 7, donc 300 A 168 = 22 x3 = 12, et 300 v 168 = 23 x 3 x 52 x 7 = 4200.
Remarque. On peut alors trouver le PPCM de deux entiers a partir de leur PGCD.
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