MPSI — Mathématiques 2025-26

Chapitre 11

Limites — Continuité

Dans tout le chapitre, f est une fonction définie sur un intervalle I de R (non vide et non réduit & un point), & valeurs
réelles, et a désigne un point de l'intervalle I ou une extrémité de I.

| Limite d’une fonction

1. Définitions et premiéres propriétés

Définition - Limite en un point

— On dit que f admet pour limite £ € R en a € R, et on note f(x) — £., si
r—a

Ve>0,dIn>0,Veel, |[x—a|<n = |f(zx)—{ <e.

— On dit que f admet pour limite +o0 en a € R, et on note f(x) — +00, si

r—a

VA>0, In>0, Vzel, |[x—al<n = f(z)> A

De méme, on dit que f admet pour limite —coena € Rsi VA <0, 3p >0, Vz e I, |z—a| <n = f(z) < A.

Remarques.

— II faut comprendre la définition de la limite de la maniére intuitive suivante : f admet £ € R pour limite en a si
f(z) est arbitrairement proche de ¢, pourvu que x soit assez proche de a.

— On étend cette définition au cas ou f est définie sur une partie quelconque A de R et a est un point adhérent a
A, c’est-a-dire la limite (finie) d’une suite a valeurs dans A.

A Comme pour les suites, on ne peut écrire lim f(x) qu’apreés avoir justifié 'existence de la limite.
r—a

Exemple. La fonction f: ]0,+o0][ — R vérifie f(x) — +c0.
1

z—0
z A

Démonstration. Soit A > 0.Enposantn = %, ona:VeeR}, [z|<n=1>1=4 0O

€T —

1
n

Définition - Limite en +©

Si +0 est une extrémité de I, on dit que :

* [ admet £ € R pour limite en +00, et on note f(x) - £, si
r——+00

Ve>0,3dB >0, Vzel, > B = |f(z) -/ <e,

* f admet +00 pour limite en +00, et on note f(x) - +00, si
r—-+00

VA>0,3B>0,Vzel, > B = f(z)> A,

* f admet —o0 pour limite en +00, et on note f(x) 7, % si
r——+00

VA<0,3B>0,Vel, z>B = f(zx)<A.

Remarques.

— On définit de maniere analogue les limites d’une fonction en —oo en remplacant « 3B > 0, Vx > B » dans les
propositions quantifiées par « 3B < 0, Vx < B ».
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— Les inégalités sont choisies strictes dans toutes ces définitions, mais les notions sont inchangées en choisissant
des inégalités larges (par exemple : Vo = B, f(z) > A). On pourra donc indifféremment utiliser I'une ou l'autre
des écritures.

~ SiaeRetleR, alors
f@) —t < f(z)=l-—0 < |f(z) =€ —0.

Exemple. La fonction f: z — % admet pour limite 0 en +o0.

Démonstration. Soit ¢ > 0. En posant B= 1, ona:VzeR}, 2> B = |1| =1 <ec. O

Une adaptation de la preuve de 'unicité de la limite d’une suite donne I'unicité de la limite d’une fonction en un point
de R.

" Théoréme - Unicité de la limite

Si f admet une limite en a € R, alors cette limite est unique.

Propriété vraie sur un voisinage. Soit a € R. On dit que f vérifie une propriété & au voisinage de a :

— ¢l existe n > 0 tel que f vérifie & sur Inja —n,a + [, dans le cas ot a € R
— ¢’il existe B € R tel que f vérifie & sur In]|B, +o[, dans le cas ot a = +00.
— ¢’il existe B € R tel que f vérifie & sur In] — o0, B[, dans le cas ot a = —o0.

[ Théoréme

Si f admet une limite finie £ en a € R, alors f est bornée au voisinage de a.

Démonstration. On suppose a € R. Comme f(z) — ¢, il existe n > 0 tel que si | — a| < 7, alors |f(z) — ¢| < 1.

r—a
Ainsi,
Veelnla—na+nl, |f(@)] = |f(z) -+ < |f(z) =L+l < 1+
On a bien montré que f est bornée sur Inja —n, a + n[. Les autres cas se traitent de la méme maniére. O
| Théoreme

Si f posséde une limite finie en un point a de I, alors f(z) —i f(a).

Démonstration. Raisonnons par 'absurde : on suppose que f(z) — £ et £ = f(a).
r—a

On pose € = |f(a) — £|. On sait qu’il existe 1 > 0 tel que pour tout x € I vérifiant |z —a| < n, on a |f(x) —¢| <e. En
choisissant = = a, on obtient alors |f(a) — £| < &, ce qui est une contradiction. O

2. Limites a gauche, a droite

Définition - Limite a gauche, limite a droite
Sia€R, on dit que f admet une limite £ a gauche en a si la restriction f|;.j_q, o @dmet £ pour limite en a. On
note alors f(z) — ¢. En d’autres termes,

r—a

o flg) — LeR si: Ve>0,3In>0,Vzel, a—n<z<a=|f(z)—{ <k,

r—a

o f(z) — 4+ si: VA>0,3In>0,Veel, a—n<z<a= f(z)>A

r—a—
Le cas ou la limite a gauche vaut —oo est analogue.

De méme, f admet une limite £ a droite en a si la restriction f|;4)4,4oof @dmet £ pour limite en a. On note alors

flz) — ¢

z—a™t
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Remarque. Lorsque la limite & gauche (resp. & droite) en a existe, on la note parfois f(a™) (resp. f(a™)).
Exemples.

- SikeZ,alorsona: |z] — k-1, et |z] — k.

rz—k— z—xt

~Ona: tanr — —o0, et tanzx —> +00.

T — ™+
I—>2 1}—)2

Remarques.
— L’existence de la limite a gauche ou a droite en a ne dépend ni de I'existence,
ni de la valeur de f(a).

— Interprétation graphique. Lorsque la limite (a gauche ou & droite) de f en a .
est infinie, on dit que la courbe représentative de f a une asymptote verticale
d’équation z = a.

— /\ Les limites & droite et & gauche, si elles existent, peuvent étre distinctes, ‘ “
et peuvent différer de f(a) si cette valeur existe.

Théoréme - Limite et limites a gauche, a droite

Soit un réel a € I qui n’est pas une extrémité de 1.

o Si f est définie en a et £ € R, alors  f(z) — ¢ < (f(sc) — £, f(x) — L et f(a)zg),

r—a T—a— z—a™t

o Si f n’est définie pas définie en a et £ € R, alors f(z) — ¢ < (f(x) — L et f(zr) — E).

T—a T—a z—a™t

Démonstration. Nous traitons le premier point, le second en étant une adaptation.
— Si f(x) — ¢, alors il est clair que f(x) — Let f(x) — £. On a aussi montré f(a) = ¢ ci-dessus.
r—a T—a~ Tr—a
— Si maintenant f(x) — ¢, f(z) —, Let f(a) = ¢, on fixe € > 0, et on sait qu'il existe 11,72 € R% tels que
r—a— r—a

Veel, a—m<z<a = |f(x)—{ <e et Veel, a<z<a+mn = |f(x)—{ <e.

Si on pose 7 = min(n,72), on a alors pour tout z € I, |z —a| <n = |f(x) —{| < ¢, du fait que f(a) =¢. O

3. Caractérisation séquentielle de la limite

" Théoréeme - Caractérisation séquentielle de la limite
Si ¢ € R, alors

f(x) — ¢ <« pour toute suite (zp,)nen € IV telle que z,, — a, flz,) — L
r—a n—+0o0 n—+00

Démonstration. On suppose ici a € R et ¢ € R, les autres cas sont des adaptations directes.

— Supposons que f(x) - ¢. Considérons (x,,)nen € IV telle que x,, e Y et montrons que f(x,) e L.

On fixe € > 0. On sait qu'il existe n > 0 si x € I est tel que |z — a| < n, alors on a |f(z) — ¢| < €. Comme

Tn —> 4 il existe N € N tel que pour tout n > N, on a |x,, — a| < n. Par conséquent, on a |f(z,) — | < e.
n——+ao0

— Montrons la deuxiéme implication par contraposée : on suppose que f(x) -/~ £, i.e. il existe € > 0 tel que
xr a

Vn>0,3dzel, [r—al<n et |f(z)—{ =e.

Ainsi, pour tout n € N* (en choisissant n = L), il existe un réel z,, € I tel que |z, —a| < L et |f(z,) — (] > e.
Ceci entraine que z,, 7, @ et f(zn) - L. O

Remarque. Pour montrer qu'une fonction n’admet pas de limite en a, il suffit donc par exemple :
— de trouver une suite (z,,) € I" telle que z,, =, ¢ et (f(x,)) n’a pas de limite,
n—-+ao0

— de trouver deux suites (), (y,) € IV de limite a telles que (f(x,)) et (f(yn)) ont des limites distinctes.
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Exemple. La fonction cos n’admet pas de limite en +o0.

Démonstration. Pour tout n € N, on pose z, = 2n7 et y, = (2n + 1)7. Les suites (z,) et (y») tendent toutes deux
vers +00. Par ailleurs, pour tout n € N, on a alors cosz, = 1 et cosy, = —1, donc les suites (cosz,) et (cosyn)
n’ont pas méme limite. O

Remarque. On a de méme aussi une caractérisation séquentielle pour les limites a gauche et a droite en un point :

f(x) — £ < pour toute suite (Z,,)nen € IN telle que 2, — aetVneN, z, <a, flzn) — L
z—a~ n—+00 n—>+o0

4. Limites et opérations

On déduit de la caractérisation séquentielle de la limite d’une fonction que les opérations sur les limites de fonctions ont
les mémes propriétés que les opérations sur les limites de suites (addition, produit, multiplication par un réel, inverse),
vues dans le chapitre SUITES REELLES. On se contente donc ici de détailler 'effet de la composition de fonctions sur
les limites.

" Théoréeme - Composition de limites

Soient f: I — Ret g:J — R deux fonctions réelles telles que f(I) = J. Si a un point ou une extrémité de I et

{ e R, alors
fl) —b et gly) — € = g(f(z)) — L

T—a y—b T—a

Démonstration. Traitons le cas ou a,f € R. On fixe ¢ > 0. On sait qu’il existe § > 0 tel que pour tout y € J tel
que |y — b] < 4, on a |g(y) — £| < e. Par ailleurs, il existe n > 0 tel que pour tout x € I tel que |x —a|] < n, on a

|f(x) —b| < 4. Ainsi,
Veel, lt—a|l<n = |f(x)—bl<d = |g(f(z)) — ¢ <e.

Ceci montre que g(f(z)) — £. O

r—a

5. Limites et inégalités

Comme ci-dessus, la caractérisation séquentielle des limites de fonctions entraine que les résultats sur les limites et
inégalités vus dans le chapitre SUITES REELLES sont directement transposables ici.

- Théoréme - Passage a la limite des inégalités

Si f et g sont deux fonctions définies sur I possédant une limite finie en a, et si f < g au voisinage de a, alors

lim f(z) < lim g(x).

T—a r—a

A Comme pour les suites, il convient de remarquer que si f < g sur un voisinage de a, on a bien sir toujours
lim f(z) < lim g(z), mais on n’a pas I'inégalité stricte en général.
r—a

r—a

Les inégalités strictes deviennent larges a la limite.

" Théoréme - Limites et inégalités strictes
Si f admet une limite £ € R en a, alors :

— pour tout m < £, on a f > m au voisinage de a,
— pour tout M >/, on a f < M au voisinage de a.

Remarque. On en déduit : si f et g sont deux fonctions ayant une limite en a et lim,_,, f(x) < lim,_, g(z), alors
f < g au voisinage de a.

Théoréme - Encadrement, minoration, majoration
Si f, g, h sont trois fonctions réelles définies sur I et £ € R, alors on a les propriétés suivantes.

— FEncadrement : si g < f < h au voisinage de a et g(x) — £, h(x) — ¢, alors f(x) — £.
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— Minoration : si g < f au voisinage de a et g(x) — +00, alors f(z) — +o0.
Tr—a

r—a

— Magjoration : si f < g au voisinage de a et g(z) — —o0, alors f(x) — —o0.
r—a r—a

Exemple. Soient f, g sont deux fonctions définies sur I telles que f est bornée et g(x) — 0, alors f(z)g(x) — 0.

r—a

En effet, si f est bornée par M, alors on a 0 < |f(z)g(z)| < M|g(x)| pour tout z € I. On conclut par encadrement.

6. Théoréme de la limite monotone

Théoreme - Théoréme de la limite monotone

— Si f est une fonction monotone, elle admet une limite a gauche et a droite en tout point ou cela a un sens.
De plus, si a € I et f est croissante, on a

lim f(z) < f(a) < lm f(z).

T—a~ z—a™t

— Si f est croissante sur l'intervalle ]a, b[, alors :

si f n’est pas majorée, on a f(z) m— +00, et si f n’est pas minorée, on a f(x) — —oo.
r— r—a

Remarque. Les énoncés sont analogues si f est décroissante.
Démonstration. On se contente de montrer que, dans le cas ou f est croissante sur |a,b[ et minorée, f admet une

limite & droite en a. Les autres cas sont analogues. Posons m = inf{f(x), = €]a, b[}, et montrons que f(z) — m.

z—at
Soit € > 0. On sait qu’il existe xg €]a, b[ tel que f(xg) < m + . Par croissance de f, on a alors pour tout = €]a, zo|[,
m < f(x) < f(xg) <m+ ¢, donc 0 < f(x) —m < e. Ainsi, en posant = ¢ — a, on a :

Veel, a<zx<a+n = |f(x)—m|<e,

donc f admet m pour limite a droite en a. O

7. Cas de fonctions a valeurs complexes

Il est possible d’étendre la définition de la notion de limite aux fonctions f : I — C. Les définitions sont les mémes, a
ceci pres qu’on a recours au module dans C au lieu de la valeur absolue dans R.

Définition - Limite d’une fonction a valeurs complexes
Soient un fonction f : I — C et a un point ou une extrémité de I. On dit que f admet ¢ € C pour limite en a si :

oVe>0,In>0,Vzel, |[z—a|<n = |f(z)—{ <e, siaeR,
o Ve>0,3IB >0, Vx> B, |f(z)—{ <e, sia=+o0.

Le cas o a = —o0 est analogue.

Théoréme - Limite et parties réelles, imaginaires

Soient un fonction f : I — C et a un point ou une extrémité de I et £ € C. On a

{ Re f(r) — Rel

T—a

Jm f(z) — Im/

T—a

flz) ¢ <

Tr—a

Démonstration. Comme pour les suites, la preuve repose directement sur la remarque :

| Re(f () — Re(0)] P )
|3:1(f(a:)) _ jne‘t(éﬂ } < [f(z) =1 = \/| Re(f(z)) — Re(O)|*> + | Im(f(z)) — Tm(£)[2. O

On en déduit que les propriétés sur les limites finies : unicité, caractére borné localement, caractérisation séquentielle,
lien avec les opérations, sont encore vraies dans ce cadre.

A Les résultats sur les inégalités et la monotonie ne tiennent bien siir pas pour les fonctions a valeurs complexes :
les inégalités n’ont pas de sens dans C.
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Il Continuité

1. Continuité en un point

Définition - Continuité en un point, continuité a gauche, a droite
Soit a € I.

— On dit que f est continue en a si f(x) — f(a), c’est-a-dire :
r—a

Ve>0, In>0, Ve el, |[x—a|l| <n = |f(z)— fla)] <e.

— On dit que f est continue a gauche en a si f|;]_q qf st continue en a, c’est-a-dire f(z) — f(a).

r—a

— On dit que f est continue a droite en a si f|-jq,4o0[ €St continue en a, c’est-a-dire f(z) — f(a).
r—a

Remarque. La fonction f est continue en a € I si et seulement si elle admet une limite en a.

Exemple. La fonction x — |z] est continue en tout point de R\Z. Elle est par ailleurs continue & droite en tout k € Z,
mais pas continue a gauche.

On déduit directement des résultats sur les limites de fonctions le résultat suivant.

“ Théoréme - Continuité en un point et continuité a gauche, a droite

La fonction f est continue en a € I si et seulement si elle est continue & gauche et & droite en a.

el/  six#0

0 iz =0 est continue a gauche et a droite en 0, donc continue en 0.

Exemple. La fonction f : x — {

Les résultats sur les limites et opérations entrainent directement :

— une combinaison linéaire de fonctions continue en a est continue en a,
— un produit de fonctions continues en a est continu en a,
— linverse d’une fonction continue en a qui ne s’annule pas au voisinage de a est continue en a.

— si f est continue en a et g définie et continue en f(a), alors g o f est continue en a.

2. Fonction prolongeable par continuité

Définition-théoréme - Prolongement par continuité

Soit une fonction f : I'\{a} — R. On dit que f est prolongeable par continuité en a si f admet une limite finie en
a. La fonction f : I — R définie par :

e lim f(x) siz=a

T—a

. { f(z) siz #a

est continue sur I et est appelée prolongement continu de f sur I.

Dans la pratique, on notera toujours ce prolongement f.

Exemple. La fonction f définie sur |0, +oo[ par

sinx

fix—

&

est prolongeable par continuité en 0, d’apres la limite usuelle % — 1. ~
xr—

S

A Attention & ne pas confondre une fonction définie en zg et continue en xg et une fonction non définie en xq
prolongeable par continuité en xg.
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3. Caractérisation séquentielle de la continuité

Le résultat suivant découle directement de la caractérisation séquentielle de la limite.

Théoréme - Caractérisation séquentielle de la continuité

. . N
f est continue en a < pour tout suite (), € I telle que z,, e Y fzn) et f(a).

Remarque. En utilisant la contraposée de ce résultat, on peut montrer qu’une fonction est discontinue en un point
a : il suffit de trouver une suite (x,,) de I qui tend vers a, mais qui n’a pas de limite, ou encore deux telles suites
qui ont des limites distinctes.

neN

1 size@,

. est discontinue en tout point.
0 sinon

Exemple. La fonction 1g, définie par 1g : z — {

Démonstration. Soit a € R.

— Par densité de Q dans R, il existe une suite (), . telle que x, o, & Pour tout n € N, on a f(zn) = 1.
n—+0o

neN

— Par densité de R\Q dans R qu’il existe une suite (y»)

nen telle que yn, T Pour tout n € N, ona f(yn) = 0.

Comme (f(2n)),cn € (f(Un)),eny n'ont pas méme limite, on en déduit que f n’est pas continue en a. O

4. Point de vue global

Définition - Continuité sur un ensemble

On dit que f est continue sur I si elle continue en tout point de I. On note €' (I,R) ou ¢°(I,R) ensemble des
fonctions continues sur I. On note parfois plus simplement ¢ (I) ou °(I).

Remarque. Les fonctions usuelles : fonctions polynomiales, valeur absolue, fonctions In, exp, fonctions puissances,
fonctions trigonométriques, sont continues sur leur ensemble de définition.

% Pour montrer qu’une fonction est continue

— on utilise les résultats généraux sur les intervalles ou on peut le faire,
— on étudie séparément (calculs de limite) les points qui posent probléme.

5. Le théoreme des valeurs intermédiaires

Le résultat suivant est un cas particulier du résultat global qui suivra. On se raméne souvent a ce cas de figure lorsqu’on
utilise le théoreme des valeurs intermédiaires.

Théoreme - Théoréme des valeurs intermédiaires

Si f est continue sur Uintervalle I et a,b € I sont tels que a < b et f(a) et f(b) sont de signes opposés, alors il
existe x € [a, b] tel que f(z) = 0.

Démonstration. On suppose par exemple f(a) < 0 et f(b) = 0. On introduit les suites (an ), oy €t (bn), ey définies par

récurrence de la maniere suivante.

neN

— On pose ap = a et bg = b. On a alors f(ag) <0 et f(by) = 0.
— Soit n € N. On suppose a,, et b, construits tels que f(a,) < 0et f(b,) =0, et b, —a, = 2%(() — a). On note
my, = %(an +by).

o Si f(my,) = 0, alors on pose an+1 = an et b1 = my,.
o Si f(my,) < 0, alors on pose a,+1 = My, et byr1 = by,.

Dans les deux cas, on a alors f(an+1) < 0 et f(bpt1) = 0, et bpp1 — Gpy1 = %(bn —ay) = 2%(b —a). Par
ailleurs, on a a,41 = a, et by11 < by.

Ainsi, les suites (), €t (bn),,cy sont respectivement croissantes et décroissantes, et b, — ar, s 0.
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Comme les suites (an),cy €t (bn), oy Sont adjacentes, elles convergent vers une méme limite = € [a,b]. Par continuité,
on a f(ay) - f(z), ce qui donne f(z) < 0. De méme, f(b,) - f(z), donc f(x) = 0. Finalement, f(z) =0. O
n—+00 n—+00

Remarques.

— Le théoreme ci-dessus se reformule : toute fonction continue sur un intervalle qui change de signe s’annule sur
cet intervalle.

— La contraposée du théoreme s’écrit : si une fonction continue sur un intervalle ne s’annule pas sur cet intervalle,
alors elle est de signe constant.

" Théoréme - Théoréme des valeurs intermédiaires, version générale
f(b) Si f est continue sur un intervalle I et a,b € I avec a < b. Pour tout
" y compris entre f(a) et f(b), il existe (au moins) un réel z € [a, b]
tel que
f(a)
fl@)=y.
. b Autrement dit, 'image de f est un intervalle.

Démonstration. 11 suffit d’appliquer le théoréme ci-dessus a la fonction continue ¢ : « — f(z) — y. Si par exemple
fla) <y < f(b), alors on a g(a) = f(a) —y < 0 et g(b) = f(b) —y = 0, donc il existe = € [a,b] tel que g(z) = 0,
c'est-a-dire f(z) = y.

Montrons que f(I) est un intervalle : si y1,y2 € f(I) avec y; < yo, il s’agit de montrer que [y1,y2] < f(I). On fixe
y € [y1,y2]. On sait qu’il existe aq,ag € I tels que y1 = f(a1) et y2 = f(az). Comme y € [f(a1), f(az)], on déduit de
ce qui précede qu’il existe = € I tel que f(x) =y, donc y € f(I). O

Remarques.

— Le théoreme des valeurs intermédiaires est un théoreme d’existence : il établit qu’il existe un tel réel x, mais ne
donne pas sa valeur explicite. Par ailleurs, ce réel n’est pas nécessairement unique.

— Le théoréme devient faux si la fonction n’est pas continue, ou si I’on ne la considére pas sur un intervalle!

N

Exemple. Cherchons & approcher les racines du polynéme X3 — 4X + 1, en appliquant le théoréme des valeurs
intermédiaires & la fonction continue f : x — x> — 4z + 1.

— Comme f(0) =1et f(1) = —2, donc il existe x5 €]0, 1 tel que f(z2)

— Comme f(1) = —2 et f(2) = 1, donc il existe x3 €]1, 2[ tel que f(z3) =
— Comme f(z) — —ooet f(0) =1, il existe x1 €] — o0, 0[ tel que f(z1) = 0.

r——00

On peut par ailleurs affiner ce dernier encadrement : comme f(—3) = —14 et f(—2) = 1, on a en fait x; €] — 3, —2][.
Il arrive fréquemment qu’on ait besoin d’introduire une fonction dite “auxiliaire” pour utiliser le théoreme des valeurs
intermédiaires. Il sera alors important de choisir la fonction la plus adaptée a la situation.

Exemple. Toute fonction f continue de [0, 1] dans [0, 1] admet un point fixe.

Démonstration. On introduit la fonction auxiliaire g :  — f(z) — z. définie sur [0, 1]. La fonction ¢ est continue
comme somme de fonctions continues sur [0, 1]. Il s’agit de montrer qu'’il existe z € [0, 1] tel que g(z) = 0. On a :

— f(0) € [0,1] donc f(0) = 0, ce qui donne g(0) > 0,
- f(1) €[0,1] donc f(1) <1, ce qui donne g(1) < 0.

D’apres le théoréme des valeurs intermédiaires, on sait qu’il existe alors x € [0, 1] tel que g(z) = 0, soit f(z) =z. O

6. Le théoréme de la bijection

" Théoréme - Théoréme de la bijection
Si f est une continue et strictement monotone sur 'intervalle I, alors

— lensemble J = f(I) est un intervalle, et f définit une bijection de I sur J,
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— la bijection réciproque f~!:.J — I est également continue et strictement monotone sur .J, de méme sens
| de variation que f.

Remarque. Ce théoréme nous a permis en particulier de définir les fonctions exp, arccos, arcsin et arctan, et donne
aussi leur continuité.

Démonstration.

— Le théoréme des valeurs intermédiaires assure que f(I) est un intervalle. Comme f est strictement monotone, f
est par ailleurs injective sur 7. On en déduit que f est une bijection de I sur J = f(I).

— Soit @ € J qui n’est pas 'extrémité gauche de J. Montrons que f~1(y) — f~!(a).
y—a~

Nous avons déja montré que f~! est strictement monotone, de méme monotonie que f. Ainsi, la limite ci-dessus
existe par le théoreme de la limite monotone, notons-la ¢ :

FN) = 6 done F(Hw) — (0

Yy—a Y

par continuité de f. Comme pour tout y € J, f(f~1(y)) =y, on a a = f(¢) par unicité de la limite. Ceci se récrit
¢ = f~!(a). On peut conduire le méme raisonnement pour la limite & droite, ce qui donne la continuité de f~*
en a. S’il se présente, le cas de 'extrémité gauche est plus simple car il ne requiert que la continuité a droite. [

Remarque. On peut par ailleurs décrire de maniére précise I'ensemble f(I), selon le type d’intervalle de I et la
monotonie de f. Par exemple, si f est continue strictement croissante sur I et

o I =Ja,b], ot a,be R, alors f(I) = [f(a), f(])],
o I=]a,b[,onacRu{—w} et beR U {+0}, alors f(I) = ] lim_f(z), lim f(x)[.
r—a Tr—0"
Exemple. Montrons qu’il existe une unique solution dans R, a I’équation e* + z = 2.

— La fonction f : x — e” 4+ x est continue, strictement croissante comme somme de deux fonctions continues,
strictement croissantes.

— Par le théoréme de la bijection, f définit alors une bijection de I = [0, 4oo[ sur f(I) = [1, +ool.
Comme 2 € f(I), on a bien existence et unicité d’une solution & 1’équation dans R, .
Exercice 1. Montrer que 'équation 2* 4 3” = 5% admet une unique solution sur R? .

La démonstration du résultat suivant n’est pas exigible, et fait 'objet d’un exercice de TD.

' Théoréme

Si f est continue et injective sur l'intervalle I, alors f est strictement monotone.

7. Théoreme des bornes atteintes

Rappel. On appelle segment de R un intervalle fermé borné, c’est-a-dire un intervalle de la forme [a,b] avec a,b € R
et a <b.

" Théoréme - Théoréme des bornes atteintes

Toute fonction continue sur un segment non vide est bornée et atteint ses bornes.

Démonstration. Soit f une fonction continue sur le segment non vide [a,b]. Montrons que f est majorée et at-
teint son maximum, le cas du minimum est similaire. L’ensemble A = {f(z),z € [a,b]} est non vide, on note alors
M =sup A e R u {+w}. On sait qu’il existe une suite (y,), . d’éléments de A telle que y, — M.

n—

neN
+00
Pour tout n € N, on considére z,, € [a,b] tel que f(z,) = y,. Ainsi, la suite (z,),y est bornée, et admet donc une

sous-suite convergente dans [a,b] : Ty, L€ [a,b]. Par continuité, on a alors y, () = f(Zy(n)) - f(z).
n—-+000 n—+0o0

Or yu(n) St M, donc par unicité de la limite, M = f(x), et sup A = max A = M, donc f atteint son maximum. [
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Corollaire

L’image d’un segment par une fonction continue est un segment.

Démonstration. On sait par le théoreme des valeurs intermédiaires que 'image d’un segment par une fonction continue
est un intervalle, dont on sait par le théoréme des bornes atteintes qu’il contient ses bornes, c’est donc un segment. [

Le théoreme des bornes atteintes est illustré par la figure de gauche ci-dessous. Attention : lorsque la fonction n’est
pas continue, f(I) n’est pas nécessairement un intervalle (voir figure de droite).

77777777777777 max f (@) /\»

f(I)

mg[xf(m) Lo

f)

xzel

Exemple. Toute fonction continue périodique sur R est bornée.

Démonstration. Si f est T-périodique, avec T' > 0, alors f est continue sur le segment [0, 7] donc bornée sur [0,77] :
il existe M > 0 tel que Vz € [0,T], |f(z)] < M.

Pour tout z € R, il existe un entier n € Z tel que nT < z < (n + 1)T. Ainsi,par T-périodicité de f, on a :
|[f(@)| =|f(x —=nT)| < M, car x —nT € [0,T]. O

8. Cas de fonctions a valeurs complexes

Comme pour les limites, on peut aisément étendre la définition de la continuité aux fonctions a valeurs complexes.

Définition - Fonction continue a valeurs complexes
Soit f: I — C.
— Siael,ondit que f est continue en a si f(z) — f(a).
r—a

— Si f est continue en tout point de I, on dit que f est continue sur I.

On note ¢'(I,C), ou encore ¢°(I,C) I'ensemble des fonctions continues sur I a valeurs dans C.

Le résultat suivant repose directement sur le résultat analogue sur les limites.

Théoréme - Fonction continue a valeurs complexes et parties réelle et imaginaire

Une fonction f: I — C est continue sur [ si et seulement si les fonctions fRe f et Jm f sont continues sur .

Les résultats sur la caractérisation séquentielle et les opérations sur les fonctions continues vus plus haut & propos des
fonctions a valeurs réelles sont encore valables pour les fonctions a valeurs complexes.

En revanche, les théorémes des valeurs intermédiaires et de la bijection n’ont pas de sens dans ce cadre, et ne sont
donc pas valables.
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