MPSI — Mathématiques 2025-26

Chapitre 10

Matrices — Systémes linéaires

Dans toute le chapitre, K désigne R ou C.

| L’ensemble .7, ,(K)

1. Définitions

Définition - Matrice

Soient n,p € N*. On appelle matrice de taille n x p toute famille A = (a; ;) 1<i<» d’éléments de K.

1<j<p

Les éléments a; ; sont appelés les coefficients de la matrice A, et on représente A sous la forme d’un tableau a n
lignes et p colonnes :

ai.1 ai,2 .. Q1p
az 1 as 2 s Q2p
Gp,1 Apn2 ... GQpp

Par défaut, les coefficients d’une matrice A sont notés a; ;, A; ; ou encore A[i, j]. Les coefficients de la forme a; ;
sont appelés coefficients diagonauz de A, et ces coefficients forment la diagonale de A.

On note 4, ,(K) I’ensemble des matrices & n lignes et p colonnes & coefficients dans K.

— Casn =1 :on dit que A est une matrice ligne.
— Cas p=1:on dit que A est une matrice colonne.

— Cas n =p : on dit que A est carrée, et on note ., (K) au lieu de .4, ,,(K).

Exemples.

1. On appelle matrice nulle de 4, ,(K), notée 0, , ou encore simplement 0, la matrice de .4, ,(K) dont tous les
coefficients sont nuls.

2. On appelle matrice identité de 4, (K) la matrice de .#,(K) dont tous les coefficients diagonaux valent 1 et les

autres valent O : 1 0 ... 0
0o 1
In =
: . .0
0 ... 0 1

1 sii=j,

En d’autres termes, I, = (0;,j)1<i,j<n, Ol 0; ; est le symbole de Kronecker : §; ; = { 0 sinon

Définition - Matrices élémentaires

Pour tous (k,1) € [1,n] x [1,p], on note Ej; la matrice de .4, ,(K) dont tous les coefficients sont nuls, sauf
Ey [k, 1], qui vaut 1. En d’autres termes, pour tous ¢, j, Ex [%, j] = 0i 16;,.

Les matrices Ej; sont appelées les matrices élémentaires de 4, ,(K).

. 14 . (1 0 0 1 0 0 0 0
Exemple. Les matrices élémentaires de .#>(R) sont : <0 0), (O 0), (1 0), (0 1).

Remarque. Deux matrices sont égales si elles ont méme taille, et ont les mémes coefficients : si A, B € 4, ,(K), alors
A = B si et seulement si pour tous (¢, j) € [1,n] x [1,p], a;; = b; ;.

Notation - Lignes et colonnes .
1j

Si Ae #,,(K), on note L;(A) = (ain ... aip) € M1 ,(K) la i-eme ligne de A, et Cj(A) = | : | € .4,1(K)

sa j-eéme colonne. Gn,j
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2. Addition et multiplication par un scalaire

Définition - Addition et multiplication par un scalaire.
Soient A, B € M, ,(K) et A e K.

* On définit la matrice A + B comme la matrice de ., ,(K) dont les coefficients sont donnés par
(A+ B),; = a;; +b;j, pour tout (4,j) € [1,n] x [1,p].

* On définit la matrice AA comme la matrice de ., ,(K) dont les coefficients sont donnés par

(AA); ; = Aa;;, pour tout (i,7) € [1,n] x [1,p].

Remarques.

— La matrice A + B est obtenue en additionnant les coefficients de A et ceux de B, et la matrice AA est obtenue
en multipliant chaque coefficient de A par A.

— Les opérations étant, coefficient par coefficient, celles de K, elles jouissent des mémes propriétés.
. 1 2 0 3 =2 1 4 0 1 6 —4 2
Exemple. Si A = (2 1 3> et B = (0 3 0), alors A+ B = <2 4 3> et 2B = (O 6 0).

Définition - Combinaison linéaire

k
On appelle combinaison linéaire des matrices Ai,..., Ay € M, ,(K) toute matrice de la forme > A\;A4;, ou
A, ..., g K =il

Théoreme - Matrices élémentaires

Toute matrice de .4, ,(K) s’écrit comme combinaison linéaire de matrices élémentaires de .4, ,(K).

nop
Démonstration. 11 suffit de remarquer que si A € 4, ,(K), alors M = >} > a;;E; ;. O
i=1j=1

3. Produit matriciel

Définition - Produit matriciel
Si Ae M, ,(K) et Be yq(K), on définit la matrice AB € 4, 4(K) par : pour tout (4, ) € [1,n] x [1,q],

p
(AB)Z'J' = Zai’kbk,j.
k=1

A - Le produit AB n’est défini que si les tailles des deux matrices sont compatibles : A € j/n,@ et Be ///®7q.
— On remarquera la correspondance des tailles : (n,p) x (p,q) ~~ (n,q).

Remarques.
— On note que si A € 4, ,(K) et B € A4, ,(K), pour tous i € [1,n] et j € [p,q],

o (AB)zJ = Ll(A)CJ(B) S .%171(K),
o Cj(AB) = ACj(B) € Mp1(K).

— On peut toujours faire le produit de matrices carrées de méme taille, et on obtient alors une matrice carrée de
méme taille. On dit que ., (K) est stable par produit matriciel.

1 2
. 1 2 1 1 0
Exemple. Si A = (_1 0 2>, B = (—01 _12> et C = <_1 2), alors

-1 2 5 -1 4
AB_<_1 26), BA_<—2 — 1), CA_<13 2 ;) BC—<—2 2).
2 0 -4 2 -4
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Le schéma ci-dessous représente la maniere de comprendre le calcul du produit de deux matrices. Il pourra étre utile
dans un premier temps de présenter les deux matrices de cette maniére pour faire le calcul de leur produit.

’ B : p lignes ¢ colonnes ‘

b by ) b

Clq

anl ... Gpk ... Gnp Cn1 -+ Cnk ..o Cng

A : n lignes p colonnes C = A x B : n lignes q colonnes

Remarques.

— Le produit matriciel n’est pas commutatif : méme lorsque les deux matrices existent et ont méme taille, en

Lorsque AB et BA sont bien égales, on dit que A et B commutent.

. 11 1 2 5 9 1 1
Exemple. SIA—(O O> etB—<4 7),alorsAB—<O O),etBA—<4 4).

Par conséquent, on prendra garde au fait qu’en général (A+B)? # A?+2AB+DB? et (A—B)(A+B) # A?-B2
— Par ailleurs, deux matrices non nulles peuvent avoir un produit nul.

‘AB =0 n’implique pas (A =0 ou B =0) ‘

. 1 0 0 0 0 0
Exemple. S1A—(O 0) etB—(O 1),alors AB—<0 0).

Une conséquence importante est que méme lorsque A est non nulle,

‘AB = AC n’implique pas B = C‘

A On ne divise jamais par une matrice, une telle opération n’a jamais de sens.

" Théoréme - Propriétés du produit matriciel
i. Associativité : si A € M, ,(K), B € M, ,(K), C € #,,(K), alors (AB)C = A(BC).
it. Distributivité : —si A e My, ,(K), B,C € My q4(K), alors A(B+C) = AB + BC,
-si A,Be M, ,(K), C e M, q,K), alors (A+ B)C = AC + BC.
iii. Elément neutre : si A€ M, ,(K), alors I,A = Al, = A.
w. Si Ae My p(K), Be My qK) et XeK, alors (AM)B = A(AB) = A(AB).

Démonstration. A I'exception de I'associativité, toutes ces propriétés découlent directement des propriétés de addi-
tion et de la multiplication dans K. Vérifions donc A(BC) = (AB)C : il s’agit de montrer que pour tous i € [1,n] et
je 1,4, (ABQC));; = ((AB)C), ;. Ona
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q

p q a P
(A(BC Zazk BC Z Zbk,lclyj = Z Eahkbk,lcu = Z(AB)”C[J = ((AB)C),LJ O
=1 I=1k=1

k=1 k=1 =1

" Théoréme - Produit avec une matrice colonne ou une matrice ligne
Soit A € A, p(K).
- Si X e #,1(K), alors AX est la combinaison linéaire suivante des colonnes de A :

P T1
= Z Tk Ck(A), ou X = :
Zp
En particulier, A | i | est la i-éme colonne de A.

5-0me pesiiien
0
- Si X € A ,,(K), alors X A est la combinaison linéaire suivante des lignes de A :

= Zkak(A), ou X = ({,131 xn)

En particulier, (0 cee 1 O) A est la i-eéme ligne de A.
S

i-éme position

p
Démonstration. 11 s’agit de montrer que les coefficients des matrices colonnes AX et C = >, x, C(A) sont les mémes.
k=1

p p p
= Yl ainXp1 = D aigwr = Y 2xCr(A)in = Cia.
k=1 k=1 k=1

Le deuxieme point est similaire. O

Pour tout i € [1, p],

Produit de matrices élémentaires. Si Ej, ; et Ej ; sont des matrices élémentaires de .4, (K), alors

Ey1 B = 01 Egp.

Démonstration. Soient i,j € [1,n], on a

(Egi Ewr) Z Ep i, m|Ey i[m, j] Z Ok,i01,mO0k mOr j = Ok 10k,i0r; = 0w 1 Epyli, ] O

4. Transposée d’une matrice

Définition - Transposée d’une matrice

Soit A € M, ,(R), on définit la matrice transposée de A comme la matrice de .#, ,,(R) notée AT (ou encore ‘A)
telle que pour tous i € [1,n] et j € [1,p]
o (A7) = aji.

Remarque. La transposition d’une matrice a pour effet de transformer les lignes en colonnes et réciproquement : pour
tous 4,7, on a L;(AT) = C;(A)T et C;(AT) = L;(A)T.

2 —1
exemples. (o ) =<1 o), et pour tous (k,1) € [1,n] x [1,p], on a (Fxs)” = Eus.
-5 6

" Théoréme - Propriétés de la transposition

— Involutivité : si A € M, ,(K), alors (AT)T = A.
— Linéarité : si A, B € My ,(K) et A\, pe K, alors (AA+ uB)T = AAT + uBT.
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| - Si Ae M, ,(K) et Be Mp4(R), alors (AB)T = BTAT,

Démonstration. Les deux premieres propriétés découlent directement des définitions, et sont laissées en exercice.
Montrons la troisitme : d’apres la définition de la transposition, on a (AB)T € .4, ,(R). Il s’agit de montrer que pour
tous i € [[1,¢] et j € [1,n], on a ((AB)T)M = (BTAT)H :

P

(AB)T),; = (AB);; = Y ajubri = (AT )yl Z BN)in("A)r; = (BTAT), .. O
k=1 k=1

k=1

Définition - Matrices symétriques, matrices antisymétriques
Si Ae #,(K), on dit que A est

— symétrique si AT = A, c’est-a-dire que a; ; = a;,; pour tous i, j,
— antisymétrique si AT = —A, c’est-a-dire que a;j = —a;; pour tous i, j,.

On note .7, (K) l'ensemble des matrices symétriques de ., (K), et on note «,(K) l'ensemble des matrices
antisymétriques de .4, (K).

1 2 3 0 1 -5
Exemples. (2 5 4)65@(]1%), (—1 0 2)6%(1&).

3 4 6 5 =2 0

Remarques. — Les coefficients diagonaux d’une matrice antisymétrique sont tous nuls.
— Une matrice diagonale est a la fois triangulaire inférieure et supérieure.

Il Matrices carrées

1. Matrices diagonales, matrices triangulaires

Définition - Matrices diagonales, matrices triangulaires

— On dit que A € #,(K) est diagonale si tous ses coefficients non diagonaux sont nuls. En d’autres termes,
our tous ¢,j € [1,nl], ¢=75 = a;,; =0.
p je1,n] J i N
On écrit parfois A = diag(Ay,..., A\p)si A= [0 *
R
0 ... 0 X,
Les matrices diagonales de la forme AI, sont appelées matrices scalaires. On note Z,,(K) ’ensemble des
matrices diagonales de ., (K).
— On dit que A est triangulaire supérieure si tous ses coefficients strictement sous-diagonaux sont nuls. En
d’autres termes, pour tous é,j € [1,n], ¢>j = a;; =0.
On dit que A est triangulaire supérieure si pour tous 4,j € [1,n], i>j = a;; = 0.

On note respectivement 7,7 (K) et 7, (K) 'ensemble des matrices triangulaires supérieures et inférieures

de A, (K).
1 0 2 1 0 0
Exemples. I3 est diagonale, | 0 —1 3| est triangulaire supérieure, [ 0 —1 0] est triangulaire inférieure.
0o 0 2 2 3 2
Remarques. — Une matrice A € .#,(K) est triangulaire supérieure si et seulement si AT est triangulaire inférieure.

— Une matrice de ,,(K) qui est a la fois triangulaire supérieure et inférieure est diagonale.

" Théoréme - Stabilité par combinaison linéaire et produit des matrices diagonales
— 2,(K) est stable par combinaison linéaire : si A = diag(aq,...,a,) et B = diag(B1,...58,) et A\, p € K|
alors AMA + puB = diag(Aag + pufBi,. .., Aay, + ubn).

- 2,(K) est stable par produit matriciel : si A = diag(as,...,a,) et B = diag(8i,...05,), alors
AB = diag(alﬁla 0009 7an6n)'
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Démonstration. La stabilité par combinaison linéaire est évidente. Pour le produit, il suffit de remarquer que si
i,j,k € [1,n], alors le terme a; by ; est non nul si et seulement si i = k = j. On en déduit que si i = j, (AB);; = 0,
et sii =7, (AB)i; = a;bi - =

 Théoréme - Stabilité par combinaison linéaire et produit des matrices triangulaires

L’ensemble .77 (K) des matrices triangulaires supérieures et 'ensemble .7~ (K) des matrices triangulaires infé-
rieures sont stables par combinaison linéaire et par produit.

De plus, si 4, B € 7, (K), alors (AB);; = a;:bi ;- De méme si A, B € 7, (K).

Démonstration. La stabilité par combinaison linéaire est évidente. Intéressons-nous a la stabilité par produit de
FF(K) (le cas de 7, (K) est analogue) : soient A, B € 7 (K). Si i, € [1,n], alors

Sik’<i, Qi k =0,

j
(AB),; = ; @i kbr,j, car { sik>j, bg;=0.

Ainsi, si i > j, on a (AB), ;

=0, donc AB € 7,7 (K). Par ailleurs, si i = j, ona (AB);; = Y, aixbe,; = aibi;. O
k=i

2. Puissances d’'une matrice carrée

Définition - Puissances successives d’une matrice carrée

Soit A € #,,(K). On définit par récurrence les puissances successives de A par

A =1,
VkeN, AR+l — A Ak — Ak A

Remarques.

— Si A n’est pas une matrice carrée, on ne peut pas définir A*.
- Si Ae #,(K) et k,leN, on a A¥* = Ak Al = A'AF. En particulier, A commute avec toutes ses puissances.
- Si A, B e #,(K)

111
Exercice 1. Soit B = <1 1 1). Calculer B2, B3, puis conjecturer une expression de B", et la démontrer.
11 1

Théoréme - Puissances d’une matrice diagonale, d’une matrice triangulaire

Si A€ 2,(K), alors A* € 2,,(K). De méme, si A€ 7, (K), alors A* € 7+ (K).

De plus, dans chacun de ces cas, les coefficients diagonaux de A* sont a¥,,..., a*

yInn

Démonstration. Le résultat s’obtient par récurrence immédiate a partir de la stabilité par produit de 2, (K) et

T+ (K). O

Remarque. Le résultat est bien siir toujours valable pour .7, (K).

' Théoreme - Formule du binéme, formule de Bernoulli

Soient A, B € #,,(K) deux matrices QUI COMMUTENT. On a alors pour tout m € N,

m m—1
(A+B)™ = ). (’Z)AkBm—k, et A™—B™ = (A-B) ) A*Bmlk
k=0 k=0

Démonstration. Les preuves sont les mémes que celles des formules dans R. O

1 1 1
Exercice 2. Déterminer les puissances de la matrice A = (O 1 1).
0 0 1
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3. Matrices inversibles

Définition-théoréme - Matrice inversible, inverse d’une matrice
* Une matrice carrée A € #,(K) est dite inversible s’il existe une matrice B € .#,,(K) telle que AB = I,, et
BA = I,,. Dans ce cas, la matrice B, appelée inverse de A, est unique. On la note A~!.
* On appelle groupe linéaire et on note GL,,(K) 'ensemble des matrices inversibles de ., (K).

Démonstration. Supposons que A admette deux inverses B et B’. Alors on a B’ = B/(AB) = (B’A)B = B, car
AB = B’A = I,,. Ceci montre bien 'unicité de la matrice inverse de A. O

Remarque. Si A € ., (K) est inversible, alors A~! est inversible, et (A_l)_1 =A.

Le résultat suivant assure que posséder un inverse a gauche (ou a droite) suffit pour qu'une matrice soit inversible.

' Théoréme

Si Ae #,(K), alors : A est inversible < A est inversible & gauche : 3B € .#,,(K), BA = I,
< A est inversible & droite : 3B € .#,(K), AB = I,.

Démonstration. Plus tard. O

Exemples.

oo (35 S " 1 (2 =5\ 3 5 2 =5\ (10
— La matrice A = (1 2) est inversible, d’inverse A~" = (_1 3 ) : en effet, <1 2> <_1 3 ) = <O 1>.

— La matrice identité I,, est inversible, et I/} = I,,.

— La matrice nulle 0,, ,, n’est pas inversible : pour toute matrice B € #,(R), on a 0,,, B = B0y, = 0,5, # L.

Remarque. Si A € 4, (K) est inversible et B,C € 4, ,(K), alorson a: AB = AC = B = C. On obtient en effet le
résultat simplement en multipliant & gauche par A~!.

 Théoréme - Conditions suffisantes de non inversibilité
Soit A € A,(K).
(7). S’ existe une matrice B € 4, ,(R) non nulle telle que AB est nulle, alors A n’est pas inversible.

De méme, s’il existe une matrice B € .4, ,(R) non nulle telle que BA est nulle, alors A n’est pas inversible.

(4i). Sil'une des colonnes (resp. lignes) de A est une combinaison linéaire des autres colonnes (resp. lignes) de
A, alors A n’est pas inversible.

Démonstration.

(7). Supposons que A soit inversible, alors B = A7'AB = A7'0,,, = 0,, ce qui est une contradiction.

(#). Sil’une des colonnes de A est combinaison linéaire des autres, alors il existe Ay, ..., A, € K non tous nuls tels que
MC1(A)+...+2,C(A) = 0,,1. Ainsi, en posant X = (A\; - -- M) Tyona AX = \Ci(A)+... 40,0 (A) = On,1-
D’apres le point précédent, comme X = 0, A n’est pas inversible. Le cas des lignes est analogue. O

Remarque. En particulier, si une colonne ou une ligne de A est nulle, A n’est pas inversible.

Exemples.

1 2 3 1 2 3
A= (2 4 6 ) ¢ GL3(R) car Lo(A) =2L1(A), B= (0 -2 —2) ¢ GL3(R) car C5(B) = C1(B) + C2(B).
0 1 -1 1 1 2

Théoréme - Inversibilité des matrices diagonales

Une matrice diagonale D = diag(\1, ..., \,) est inversible si et seulement si pour tout k € [1,n], A\x = 0.
Dans ce cas, D~! = diag ()\%, ).
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Démonstration.
— Si les scalaires A1, ..., A, sont tous non nuls, alors diag(A1,...,\,) diag (%17 R )\i) = diag(1,...,1) = I,.
— Si I'un des scalaires Aq,..., A, est nul, alors D a une colonne nulle, et n’est pas inversible. O

" Théoréme - Opérations sur les matrices inversibles
Soient A, B € #,,(K) deux matrices inversibles et p € N. Alors
i. AB est inversible et (AB)~! = B~1A~L
ii. AT est inversible et (AT)™' = (A~1)7.

iii. AP est inversible et (4?) "' = (A~1), on note alors son inverse A~7.

Démonstration.

i. Ona (B"'A™') (AB) = B™' (A"'A)B = B"'I,B = B™'B = I,.

ii. Ona (A HTAT = (AAHT = 1T = I,.
iii. On sait que A et A~! commutent, donc (A_l)pAp = (A_lA)p =I,F = 1I,. O
Remarque.

— D’apres ce qui préceéde, 'ensemble GL,, (K) est stable par produit et transposition.

~ /\ En revanche, GL, (K) n’est pas stable par somme (la somme de deux matrices inversibles n’est pas inversible
en général). Par exemple, I,, + (—I,,) n’est pas inversible.

Il Systemes linéaires et matrices

1. Systémes linéaires

Définition - Systéme linéaire
Soient n et p deux entiers naturels non nuls. Un systéme linéaire a n équations et p inconnues x1,...,z, est un
systeme d’équations de la forme

a1,121 9P a1,2%2 9 %00 o a1 pTy = b1

a21x1 + aG22x2 + -+ A2pTp = bo
() :

An1T1 + Ap2T2 + o+ AppTp, = by

ou a;; € Ket b, € K pour tous i € [1,n] et j € [1,p].

L’ensemble des solutions de (.%) est 'ensemble des p-uplets (z1,...,2,) € KP tels que (%) soit vérifié. Si (.7)
admet au moins un solution, il est dit compatible il est incompatible sinon.

On peut récrire le systéme () sous forme matricielle en remarquant que :

a1 ... a1,p z1 b1
siA:<§ ;),Xz(f),Bz(:), alors () < AX =B.
An,1 - Qn,p Tp b‘n

On dit alors que A est la matrice du systéme, et B son second membre. Lorsque B est nul, i.e. by = ... = b, =0,
on dit que le systéme est homogeéne.

Remarque. Trouver (z1,...,x,) € K solution du systéme (.) est équivalent & trouver X € .#), 1 (K) tel que AX = B.
Seule differe la représentation des solutions : sous forme de p-uplets ou de matrices colonnes.

Dans la suite, on identifiera donc souvent K? et .7, 1(K), qu'on notera parfois K?, voire K” en faisant un abus de
notation.

2y + 3z —1 0 2 3 -1

x

Exemple. Le sytéme linéaire { br—dy+2z = 2 se récrit matriciellement (5 -3 2) y|= ( 2 )
z

Remarque. Il est utile de connaitre l'interprétation géométrique suivante.
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— si p = 2 : ensemble des points (z,y) du plan qui vérifient une contrainte de la forme ax + by = « est une droite
(si a et b ne sont pas tous les deux nuls). Résoudre un systéme de la forme

axr +aipy = by
a21x +agpy = by

revient a trouver ’ensemble des points du plan qui appartiennent aux deux droites. On cherche donc 'intersection
de ces droites, qui peut étre vide (si les droites sont paralleles et distinctes), réduite & un point (si les droites
sont sécantes), ou une droite entiére (si les droites sont confondues).

— si p = 3 : Pensemble des points (z,y, z) de l'espace qui vérifient une contrainte de la forme az + by + cz = « est
un plan (si a, b et ¢ ne sont pas tous les trois nuls). Résoudre un systéme de la forme

a1 +a12y+ajzz = by
az 1T + a2y + a3z = bo
asz 1@ +asz2y +azzz = b3

revient a trouver I’ensemble des points de I'espace qui appartiennent aux trois plans. On cherche donc l'inter-
section de ces plans, qui peut étre vide, réduite a un point, une droite, ou un plan entier, selon les cas.

2. Systémes équivalents, opérations élémentaires

Définition - Systémes équivalents
I On dit que deux systémes linéaires sont équivalents s’ils ont le méme ensemble de solutions.

Nous allons voir qu’on peut passer d’un systéme linéaire a un systéme équivalent en effectuant certaines opérations,
qu’on peut décomposer en les opérations élémentaires suivantes.

Définition-théoreme - Opérations élémentaires
On appelle opérations élémentaires sur un systéme les opérations suivantes.

1. Echanger deux lignes L; et L; : L; < Lj.
2. Multiplier une ligne L; par un scalaire A € K* : L; «— A\L;.
3. Ajouter a une ligne un multiple d’une autre : L; < L; + AL;, ot Ae K et j = ¢.

Les opérations élémentaires changent un systéme linéaire en un syteme linéaire équivalent.

Remarques.

— En combinant B et B, on obtient que 'opération L; < AL; + pL;, ou A = 0 et j = ¢ change le systeme en un
systeme équivalent.

— En appliquant plusieurs fois B, on constate qu’ajouter a une ligne une combinaison linéaire des autres lignes
change le systéme en un systeme équivalent.

3. Systéemes échelonnés

Définition - Matrice échelonnée, systéme échelonné
Une matrice A € 4, ,(R) est dite échelonnée si

— chaque ligne non nulle de A commence par strictement plus de zéros que la précédente,

— lorsqu’une ligne de A est nulle, toutes les suivantes le sont.

On dit qu’'un systéme linéaire est échelonné s’il est associé a une matrice échelonnée. On appelle alors rang du
systéme le nombre de lignes non nulles de A.

Exemples.

dr+y+=z

. 4 1 1 . . = 2 ) ,
— La matrice (0 0 2>, et donc le systeme linéaire { 9, — 3 sont échelonnés.
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1 11 1 r+y+z+t = 2
. 00 1 -1 N . z—t = 3 , .
— La matrice 002 3/ et donc le systeme linéaire 9,43t — 1 ne sont pas échelonnés.
0 0 0 5 5t = 0

Remarque. Si A € .#,,(R) est une matrice échelonnée, alors elle est triangulaire. En revanche, la réciproque est fausse,
comme le montre le dernier exemple ci-cessus.

% Résolution de systéme linéaire échelonné

Pour résoudre un systéme linéaire associé a une matrice échelonnée qui a exactement k lignes non nulles (c’est-
a-dire que le rang du systéme est k), on procéde de la maniére suivante.

1. On choisit k inconnues, qui seront dites principales.
2. On exprime les inconnues principales en fonction des autres, qui seront dites secondaires, et seront traitées
comme des parametres.

Exemple.

3[x] -2y + 2 -3 3[z]-2(3—42) + 2 -3 1-3z2
[y]+4z 3 < 3-42 T = 3-4z

Les solutions sont donc tous les triplets de la forme (1 — 3z, 3 —4z, z), ou z € R. On écrit cet ensemble sous la forme :

{(1-32,3—4z2,2), 2ze R} = {(1,3,0) + 2(—3,—4,1), ze R}.

4. Méthode du pivot de Gauss

Il s’agit de se ramener au cas précédent, que 1’on sait traiter. On utilise les opérations élémentaires pour se ramener a
un systeéme équivalent qui est triangulaire ou échelonné.

Exemple. Considérons

xr + 2y — 4z = 0
S5r + 4y — 2z = 12 (<)
3r + 3y — 5z = 2

— Premiére étape : On utilise les opérations élémentaires pour transformer le systéme en un systeme équivalent
ou l'inconnue x n’apparait pas dans les deux derniéres équations. Puis, on transforme ce dernier systéme en un
systéme équivalent ou les inconnues x et y n’apparaissent pas dans la derniere équation.

z + 2y — 42 = 0 r + 2y — 4z = 0
Sr 4+ 4y — 2z = 12 < —6y + 182 = 12 Lo« Ly—5I,
3r + 3y — 5z = 2 -3y + Tz = 2 Ly« L3—3L,
z + 2y — 4z = 0
<= ) + 3z = 2 L2 <« L2/6
=3y + Tz = 2
z + 2y — 4z = 0
= -y + 3z = 2
-2z = —4 Lg <« L3 - 3L2
— Seconde étape : On résout le systeme triangulaire ou échelonné :
r = —2y+4z x = 0
(A1) < y = 3z-2 < y = 4

" Théoréeme - Pivot de Gauss

Tout systéme linéaire (') est équivalent & un systéme linéaire échelonné, obtenu & partir de () par opérations
élémentaires.
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Nous décrivons ici 'algorithme, dit du pivot de Gauss, qui permet d’obtenir un systéme linéaire échelonné par trans-
formations élémentaires, a partir d’un systéme linéaire quelconque

a1,1%1 + a1,2%2 + -+ a1,pTp = b1 L1

2,121 + a2 222 + -+ a2 pTp = b2 Lg
(S) :

an, 121 + Qp 22 + - + UnpTpy = bn Ln

— Siag;; =0 :on utilise Ly pour éliminer x; des autres lignes du systemes, en faisant les opérations suivantes :

a2.1

Ly «— Ly— Ly
a1,1
Qp,1

L, « L,— 21,
ai,1

— Sia;; =0,il y a deux cas de figure :

— ¢’il existe une ligne 7 telle que a;; = 0, alors on échange les lignes 1 et ¢ : Ly < L;, et on procede ensuite
comme ci-dessus,

— sinon, x7 est quelconque : c’est une inconnue secondaire qui peut étre traitée comme un parametre, et on
passe a xs.

A 1a suite de cette étape, on obtient donc que le systeme équivaut a

aii1ry + ai2r2 + -+ a1p%p, = by
ahoTos + oo+ ay,m, = b

I, I, _

OpoXz + -0+ AppTp = bn

On peut ensuite renouveler cette opération sur le systeme constitué des n — 1 derniéres équations. Et ainsi de suite,
jusqu’a l'obtention d’'un systéme échelonné.

|
—
[]
4
<
+
N
—_

[z] +y +=z

Exemples. 1. 2 +y +z = -1 = — -z = -3 Lo < Loy — 2L,
r -y +2z =1 -2y 4+z =0 L3 — Ls— 14

3[z] =6 Lg — Ly — 2Ly

[z]=1-y—2= -2
= =3fz=1
[z]=2
L’unique solution du systéme est (—2,1,2).
+2y +z =1 +2y +z =1
2. 2x +3y —z =2 <= * -3z =0 LQ‘*L272L1
-z -y +2z =-1 y +3z =0 Ly — L3+ Ly
+2y 4z =1
=, — -3z =0
0 =0 L3<—L3+L2

- [z]=1—-2y— 2= 1+ 52
=—3z

L’ensemble des solutions est {(1 + 5z, —3z,2), z € R} = {(1,0,0) + 2(5,—3,1), z € R}. La représentation dans
R3 des solutions est donc la droite passant par le point (1,0,0), de vecteur directeur @ : (5, -3, 1).
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Exercice 3. Résoudre les systémes suivants.

2 + 3y — 2z = -1 T - y + z = =2
1. r 4+ 2y + 3z = 2 2. 2z + 3z = 7
3z + 4y — 5z = —4 r + 5y — =z = 1

5. Structure de I'’ensemble des solutions

Dans la suite, on considéere A € 4, ,(K) et B € 4, 1(K), et le systéme linéaire

AX = B ()

Définition - Systéme homogeéne associé
On appelle systéme homogene associé au systéme () le systéme linéaire

AX = (0) (+)

0

Remarque. On remarque que X = 0,1 est toujours solution du systéme homogene (7]). Par ailleurs, si X,Y sont
des solutions de (E7]) et A, u € K, alors AX + pY est encore une solution de (7).

Par conséquent : — soit (EZ]) n’a qu’une seule solution : 0,1,
— soit (BZ) a des solutions non nulles, et (EZ]) a alors une infinité de solutions.

Théoreme - Structure de ’ensemble des solutions

Le systéme ([Z) est compatible si et seulement si B est une combinaison linéaire des colonnes de A. Dans ce cas,
si Xp est une solution particuliere de ('), alors ’ensemble des solutions de ([4) est décrit par

{Xp + X, X solution du systéme homogene (73)}.

T/.l p
Démonstration. On a :  3(z1,...,x,) € KP, A(;sz < J(x1,...,zp) eKP, > x;C;(A) =B
z, .]:1
P
< B est combinaison linaire des colonnes de A.

D’ou la caractérisation de la compatibilité de ([Z). Ensuite, si X € KP, on a :

AX =B & AX=AXp & AX-Xp)=0 < X — Xp est une solution de (EZ3)
< il existe Xy solution de (EA4]) telle que X = Xp + Xj.

Ainsi, 'ensemble des solutions est {Xp + Xy, X est solution de (E77)}. O
Remarque. Il n’y a que trois cas possibles pour le systéme linéaire ((Z) : — soit ((Z) n’a pas de solution,

— soit (IZ) a une unique solution,
— soit (&) a une infinité de solutions.

6. Inversibilité et systémes linéaires

Théoréme - Inversibilité et systemes linéaires

Une matrice A € 4, (K) est inversible si et seulement si pour tout second membre B € K", le systéme linéaire
AX = B a une unique solution.

Remarque. On appelle parfois systéme de Cramer un systéme linéaire qui possede une unique solution.

On peut donc reformuler le résultat ci-dessus de la maniere suivante : A est inversible si et seulement si pour tout
B e K", le systtme AX = B est de Cramer.

Démonstration. Si A est inversible, alors pour toute matrice B € .#, 1(K), ona AX =B <« X = A7'B, donc le
systeme AX = B a une unique solution, qui est A~!B.
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Si pour tout second membre B € ., 1(K), le systeme AX = B est de Cramer, alors on note C1,...,Cy les colonnes
de I,,, et pour tout i € [1,n], on note X; 'unique solution du systéme AX = C;. On a alors

A<X1 Xn> _ <AX1 Axn> - <01 cn> -

donc A est inversible. O

Nous allons voir qu’il suffit en fait que le systeme homogene AX = 0, ; ait une unique solution pour que la matrice
A soit inversible. Dans ce cas, comme on l'a déja remarqué, I'unique solution du systeme homogene est 0y, ;.

Définition - Noyau d’une matrice

On appelle noyau d’une matrice ., ,(KK) ’ensemble des solutions du systéme homogéne AX = 0, 1, on le note
M P ]

Ker A :
KerA = {XeKP, AX =0,1}.

" Théoréeme - Inversibilité et noyau

Si A e #,(K), alors
A est inversible <« KerA = {0,1}.

En d’autres termes, A est inversible si et seulement si le systeme AX = 0, ; a pour unique solution 0,, ;.

Démonstration. Le sens direct est bien stir une conséquence du théoreme précédent. Le sens réciproque sera démontré
plus tard. O

IV Meéthodes de calcul d’inverse

1. Inverse des matrices de .#5(K)

I1 est aisé de déterminer si une matrice de .#5(K) est inversible, et de trouver son inverse dans ce cas. Nous verrons
b
que la situation est bien différente pour les matrices de plus grande taille.

 Théoréme - Inversibilité des matrices de ./ (K)

SiAd=(* b € #>(K), alors A est inversible si et seulement si ad — bc = 0. Dans ce cas,
c d

1 d b
AT = .
ad — be <—C a )

On appelle déterminant de A le scalaire ad — be, qu’on note det A ou encore |‘; 2 .

Démonstration. On remarque que (‘Z g) (i _db) = (adabc “ dﬂbc). Par conséquent,

~ siad —be =0, alors A x —L— (% ") =1, donc A est inversible, et A=! = —L_ (4 b
— si ad — be =0, alors A (_dC *db) = 02,2, ce qui implique que A n’est pas inversible. O

Remarque. Nous généraliserons plus tard ce résultat aux matrices de plus grande taille, mais nous verrons que le
calcul du déterminant est plus délicat.

2. Polynome annulateur et inversibilité

Lorsqu’on parvient & écrire une puissance d’une matrice A € .#,(K) comme une combinaison linéaire d’autres puis-
sances de A, on peut dans certains cas conclure a I'inversibilité de A, et calculer son inverse.
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Polyndmes annulateurs et calcul d’inverse. Si A € .#,(K) vérifie :
arA* + .+ a1 A+ aol, = ()

ol ag,...,ar € K, on dit que le polyndéme arX"* + ... 4+ a1 X + ag est un polynéme annulateur de A.

Si ag = 0, on peut en déduire que A est inversible et calculer aisément son inverse :

a a a a
—EAb 4 -2 A =1, donc A<—kAk_1+...—IIn> = I,.
@o ao ao aop
Ceci montre que A est inversible, et A~! = —&& ARl & .

Exemple. Si A € .4, (K) vérifie A% — 3A = 21, alors A(A% — 3I,,) = 2I,,, puis A (3 (A% —31,)) = I,,, donc A est
inversible, et son inverse est A~1 = 1 (42 — 31,,).

Remarque. Si ayp = 0 dans la relation ci-dessus, le résultat devient faux. Par exemple, si A = (8 i), alors A2 = A,

mais A n’est pas inversible.

3. Résolution d’un systéme linéaire

On sait que A € #,(K) est inversible si et seulement si pour tout second membre B € ., 1(K), le systéme linéaire
AX = B est de Cramer. Ceci fournit un moyen de déterminer si A € .#,(K) est inversible, et de déterminer son
inverse le cas échéant.

On fixe un second membre quelconque B € 4, 1(K), et on échelonne le systéme AX = B par pivot de Gauss.

— Si le systéme est de rang strictement intérieur a n, alors A n’est pas inversible.
— Si le systéme est de rang n, alors A est inversible, on trouve X = A~!B puis A~! par identification.

1 0 1 a
Exemple. Pour déterminer l'inverse de la matrice A= | 2 —1 1 |,onnote B= |b|etonrésout AX =B :
~1 1 -1 c
T +z =a T +z =a x +z =a
AX =B < 2 —y 4z =b < -y —z =b—2a = —y —z =b—2a
- 4y —z =c y =c+a —z =—a+b+c
T = b +c
= Yy =a +c
z =a —b —c
b+c 0 1 1 a 0 1 1
L’unique solution est X = a+c =11 0 1 b |, donc A est inversibleet A1 =1 0 1 ].
a—b-—c 1 -1 -1 c 1 -1 -1

4. Algorithme de Gauss-Jordan

Nous avons introduit trois opérations élémentaires sur les systemes linéaires. Nous allons a présent introduire les
mémes opérations sur les matrices :

— On note L; <> L; 'opération qui consiste a échanger les lignes 7 et j d’une matrice.
— On note L; — A\L; 'opération qui consiste a multiplier par A € K la ligne 3.
— On note L; < L; + AL; 'opération qui consiste a ajouter AL; a la ligne L;.

On note par ailleurs C; < Cj, C; < AC; et C; < C; + AC; les opérations analogues sur les colonnes.

Nous allons voir que ces opérations peuvent étre obtenues par multiplication (a4 gauche ou & droite) par des matrices
bien choisies. On considére 4, j € [1,n] et A € K*.
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— On appelle matrice de transposition une matrice de la forme

Tij =

On remarque que multiplier une matrice par 7T; ; a gauche revient a effectuer 'opération L; < L;, et
multiplier par T; ; a droite revient & effectuer 'opération C; < Cj.

— On appelle matrice de dilatation une matrice de la forme

On remarque que multiplier une matrice par D;(\) & gauche revient & effectuer l'opération L; < AL;,
et multiplier par D;(\) & droite revient a effectuer opération C; < AC;.

— On appelle matrice de transvection une matrice de la forme T; ;(\) = I, + AE; ;, c’est-a-dire

1 1
fffffff 1 77777,*,7777{__/
T;;(A) =
1
: 1
3
J

On remarque que, dans le cas des matrices carrées, ces trois types de matrices sont inversibles. Plus précisément, si

i,j€[1,n] et A e K*, 3 3 B
T} =Ty, DN =Di(5), TN =Ti(=A).

Par conséquent, multiplier une matrice (a gauche ou a droite) par une matrice d’opération élémentaire ne change pas
le caractere inversible de la matrice.

s N

% Invrersion par Gauss-Jordan

Si on parvient, par opérations élémentaires successives sur les lignes, a obtenir I,, & partir d’'une matrice A, alors,
en notant My, ..., M} les matrices des opérations élémentaires successives :

My ...MiA = I,, cest-a-dire PA = I,, ou P = M,... M.

Ainsi, on aura obtenu que A est inversible, d’inverse P. Pour trouver A~! = PI,, il suffit donc d’effectuer les
mémes opérations élémentaires successives sur la matrice I,,.

L J

Dans la pratique, on pourra effectuer en parallele les mémes opérations sur A et sur I,,, d’apres ce qui précede, lorsqu’on
aura obtenu la matrice I,, & partir de A, la matrice transformée a partir de I,, ne sera autre que I'inverse de A.
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Exemple. Retrouvons I'inverse de la matrice A de 'exemple de la page 4.

1 0
2 -1
-1 1
1 0
0 -1
0 1
1 0
0 -1
0 O

5. Inversibilité des matrices triangulaires

-1
-1

OO =

1
—2
1

1
—2
—1

o = O

__,o @ = O

—_ oo _ o O

_ o O

1 01 1
011 2
0 0 1 1
1 00 0
0 1 0 1
0 01 1

Ainsi, A€ GL3(R) et A~!

0 1 1
=1 0 1
1 -1 -1

Théoréme - Inversibilité des matrices triangulaires

Une matrice triangulaire A € .#,(K) est inversible si et seulement si tous ses coefficients diagonaux sont non

nuls.

Dans ce cas, les coefficients diagonaux de A~! sont les inverses des coefficients diagonaux de A.

Démonstration. Le résultat repose sur algorithme de Gauss-Jordan : s’en convaincre !
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