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Chapitre 10

Matrices – Systèmes linéaires

Dans toute le chapitre, K désigne R ou C.

I L’ensemble Mn,ppKq

1. Définitions

Soient n, p P N‹. On appelle matrice de taille n ˆ p toute famille A “ pai,jq 1ďiďn
1ďjďp

d’éléments de K.

Les éléments ai,j sont appelés les coefficients de la matrice A, et on représente A sous la forme d’un tableau à n
lignes et p colonnes :

A “

¨

˚

˚

˚

˝

a1,1 a1,2 . . . a1,p
a2,1 a2,2 . . . a2,p

...
...

...
an,1 an,2 . . . an,p

˛

‹

‹

‹

‚

.

Par défaut, les coefficients d’une matrice A sont notés ai,j , Ai,j ou encore Ari, js. Les coefficients de la forme ai,i
sont appelés coefficients diagonaux de A, et ces coefficients forment la diagonale de A.

On note Mn,ppKq l’ensemble des matrices à n lignes et p colonnes à coefficients dans K.

– Cas n “ 1 : on dit que A est une matrice ligne.
– Cas p “ 1 : on dit que A est une matrice colonne.
– Cas n “ p : on dit que A est carrée, et on note MnpKq au lieu de Mn,npKq.

Définition - Matrice

Exemples.

1. On appelle matrice nulle de Mn,ppKq, notée 0n,p ou encore simplement 0, la matrice de Mn,ppKq dont tous les
coefficients sont nuls.

2. On appelle matrice identité de MnpKq la matrice de MnpKq dont tous les coefficients diagonaux valent 1 et les
autres valent 0 :

In “

¨

˚

˚

˝

1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1

˛

‹

‹

‚

.

En d’autres termes, In “ pδi,jq1ďi,jďn, où δi,j est le symbole de Kronecker : δi,j “

"

1 si i “ j,
0 sinon.

Pour tous pk, lq P J1, nK ˆ J1, pK, on note Ek,l la matrice de Mn,ppKq dont tous les coefficients sont nuls, sauf
Ek,lrk, ls, qui vaut 1. En d’autres termes, pour tous i, j, Ek,lri, js “ δi,kδj,l.
Les matrices Ek,l sont appelées les matrices élémentaires de Mn,ppKq.

Définition - Matrices élémentaires

Exemple. Les matrices élémentaires de M2pRq sont :
ˆ

1 0
0 0

˙

,
ˆ

0 1
0 0

˙

,
ˆ

0 0
1 0

˙

,
ˆ

0 0
0 1

˙

.

Remarque. Deux matrices sont égales si elles ont même taille, et ont les mêmes coefficients : si A,B P Mn,ppKq, alors
A “ B si et seulement si pour tous pi, jq P J1, nK ˆ J1, pK, ai,j “ bi,j .

Si A P Mn,ppKq, on note LipAq “ pai,1 . . . ai,pq P M1,ppKq la i-ème ligne de A, et CjpAq “

¨

˝

a1,j
...

an,j

˛

‚P Mn,1pKq

sa j-ème colonne.

Notation - Lignes et colonnes
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2. Addition et multiplication par un scalaire

Soient A,B P Mn,ppKq et λ P K.

‹ On définit la matrice A ` B comme la matrice de Mn,ppKq dont les coefficients sont donnés par

pA ` Bqi,j “ ai,j ` bi,j , pour tout pi, jq P J1, nK ˆ J1, pK.
‹ On définit la matrice λA comme la matrice de Mn,ppKq dont les coefficients sont donnés par

pλAqi,j “ λai,j , pour tout pi, jq P J1, nK ˆ J1, pK.

Définition - Addition et multiplication par un scalaire.

Remarques.

– La matrice A ` B est obtenue en additionnant les coefficients de A et ceux de B, et la matrice λA est obtenue
en multipliant chaque coefficient de A par λ.

– Les opérations étant, coefficient par coefficient, celles de K, elles jouissent des mêmes propriétés.

Exemple. Si A “

ˆ

1 2 0
2 1 3

˙

et B “

ˆ

3 ´2 1
0 3 0

˙

, alors A ` B “

ˆ

4 0 1
2 4 3

˙

et 2B “

ˆ

6 ´4 2
0 6 0

˙

.

On appelle combinaison linéaire des matrices A1, . . . , Ak P Mn,ppKq toute matrice de la forme
k
ř

i“1

λiAi, où
λ1, . . . , λk P K.

Définition - Combinaison linéaire

Toute matrice de Mn,ppKq s’écrit comme combinaison linéaire de matrices élémentaires de Mn,ppKq.

Théorème - Matrices élémentaires

Démonstration. Il suffit de remarquer que si A P Mn,ppKq, alors M “
n
ř

i“1

p
ř

j“1

ai,jEi,j .

3. Produit matriciel

Si A P Mn,ppKq et B P Mp,qpKq, on définit la matrice AB P Mn,qpKq par : pour tout pi, jq P J1, nK ˆ J1, qK,
pABqi,j “

p
ÿ

k“1

ai,k bk,j .

Définition - Produit matriciel

– Le produit AB n’est défini que si les tailles des deux matrices sont compatibles : A P Mn, p et B P M p ,q.
– On remarquera la correspondance des tailles : (n,p) ˆ (p,q) ù (n,q).

Remarques.

– On note que si A P Mn,ppKq et B P Mp,qpKq, pour tous i P J1, nK et j P Jp, qK,
˛ pABqi,j “ LipAqCjpBq P M1,1pKq,
˛ LipABq “ LipAqB P M1,qpKq.
˛ CjpABq “ ACjpBq P Mn,1pKq.

– On peut toujours faire le produit de matrices carrées de même taille, et on obtient alors une matrice carrée de
même taille. On dit que MnpKq est stable par produit matriciel.

Exemple. Si A “

ˆ

1 2 1
´1 0 2

˙

, B “

˜

1 2
´1 1
0 ´2

¸

et C “

ˆ

1 0
´1 2

˙

, alors

AB “

ˆ

´1 2
´1 ´6

˙

, BA “

˜

´1 2 5
´2 ´2 1
2 0 ´4

¸

, CA “

ˆ

1 2 1
´3 ´2 3

˙

, BC “

˜

´1 4
´2 2
2 ´4

¸

.
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Le schéma ci-dessous représente la manière de comprendre le calcul du produit de deux matrices. Il pourra être utile
dans un premier temps de présenter les deux matrices de cette manière pour faire le calcul de leur produit.

Remarques.

– Le produit matriciel n’est pas commutatif : même lorsque les deux matrices existent et ont même taille, en
général,

AB ‰ BA

Lorsque AB et BA sont bien égales, on dit que A et B commutent.

Exemple. Si A “

ˆ

1 1
0 0

˙

et B “

ˆ

1 2
4 7

˙

, alors AB “

ˆ

5 9
0 0

˙

, et BA “

ˆ

1 1
4 4

˙

.

Par conséquent, on prendra garde au fait qu’en général pA`Bq2 ‰ A2`2AB`B2, et pA´BqpA`Bq ‰ A2´B2.
– Par ailleurs, deux matrices non nulles peuvent avoir un produit nul.

AB “ 0 n’implique pas pA “ 0 ou B “ 0q

Exemple. Si A “

ˆ

1 0
0 0

˙

et B “

ˆ

0 0
0 1

˙

, alors AB “

ˆ

0 0
0 0

˙

.

Une conséquence importante est que même lorsque A est non nulle,

AB “ AC n’implique pas B “ C

On ne divise jamais par une matrice, une telle opération n’a jamais de sens.

i. Associativité : si A P Mn,ppKq, B P Mp,qpKq, C P Mq,rpKq, alors pABqC “ ApBCq.
ii. Distributivité : – si A P Mn,ppKq, B,C P Mp,qpKq, alors ApB ` Cq “ AB ` BC,

– si A,B P Mn,ppKq, C P Mp,qpKq, alors pA ` BqC “ AC ` BC.
iii. Élément neutre : si A P Mn,ppKq, alors InA “ AIp “ A.
iv. Si A P Mn,ppKq, B P Mp,qpKq et λ P K, alors pλAqB “ ApλBq “ λpABq.

Théorème - Propriétés du produit matriciel

Démonstration. À l’exception de l’associativité, toutes ces propriétés découlent directement des propriétés de l’addi-
tion et de la multiplication dans K. Vérifions donc ApBCq “ pABqC : il s’agit de montrer que pour tous i P J1, nK et
j P J1, qK, pApBCqqi,j “ ppABqCqi,j . On a
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pApBCqqi,j “

p
ÿ

k“1

ai,k pBCqk,j “

p
ÿ

k“1

ai,k

q
ÿ

l“1

bk,lcl,j “

q
ÿ

l“1

p
ÿ

k“1

ai,kbk,lcl,j “

q
ÿ

l“1

pABqi,lcl,j “ ppABqCqi,j .

Soit A P Mn,ppKq.

–

i-ème position

Si X P Mp,1pKq, alors AX est la combinaison linéaire suivante des colonnes de A :

AX “

p
ÿ

k“1

xk CkpAq, où X “

¨

˝

x1

...
xp

˛

‚.

En particulier, A

¨

˚

˚

˝

0
...
1
...
0

˛

‹

‹

‚

est la i-ème colonne de A.

– Si X P M1,npKq, alors XA est la combinaison linéaire suivante des lignes de A :

XA “

n
ÿ

k“1

xkLkpAq, où X “
`

x1 ¨ ¨ ¨ xn

˘

.

i-ème position
En particulier,

`

0 ¨ ¨ ¨ 1 ¨ ¨ ¨ 0
˘

A est la i-ème ligne de A.

Théorème - Produit avec une matrice colonne ou une matrice ligne

Démonstration. Il s’agit de montrer que les coefficients des matrices colonnes AX et C “
p
ř

k“1

xk CkpAq sont les mêmes.
Pour tout i P J1, pK,

pAXqi,1 “

p
ÿ

k“1

ai,kXk,1 “

p
ÿ

k“1

ai,kxk “

p
ÿ

k“1

xkCkpAqi,1 “ Ci,1.

Le deuxième point est similaire.

Produit de matrices élémentaires. Si Ek,l et Ek1,l1 sont des matrices élémentaires de MnpKq, alors

Ek,l Ek1,l1 “ δk1,l Ek,l1 .

Démonstration. Soient i, j P J1, nK, on a

pEk,l Ek1,l1 qri, js “

n
ÿ

m“1

Ek,lri,msEk1,l1 rm, js “

n
ÿ

m“1

δk,iδl,mδk1,mδl1,j “ δk1,lδk,iδl1,j “ δk1,l Ek,l1 ri, js.

4. Transposée d’une matrice

Soit A P Mn,ppRq, on définit la matrice transposée de A comme la matrice de Mp,npRq notée AJ (ou encore tA)
telle que pour tous i P J1, nK et j P J1, pK,

pAJqi,j “ aj,i.

Définition - Transposée d’une matrice

Remarque. La transposition d’une matrice a pour effet de transformer les lignes en colonnes et réciproquement : pour
tous i, j, on a LipA

Jq “ CipAqJ et CjpAJq “ LjpAqJ.

Exemples.
ˆ

2 1 ´5
´1 0 6

˙J

“

˜

2 ´1
1 0

´5 6

¸

, et pour tous pk, lq P J1, nK ˆ J1, pK, on a pEk,lq
J

“ El,k.

– Involutivité : si A P Mn,ppKq, alors pAJq
J

“ A.

– Linéarité : si A,B P Mn,ppKq et λ, µ P K, alors pλA ` µBqJ “ λAJ ` µBJ.

Théorème - Propriétés de la transposition
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– Si A P Mn,ppKq et B P Mp,qpRq, alors pABqJ “ BJAJ.

Démonstration. Les deux premières propriétés découlent directement des définitions, et sont laissées en exercice.
Montrons la troisième : d’après la définition de la transposition, on a pABqJ P Mq,npRq. Il s’agit de montrer que pour
tous i P J1, qK et j P J1, nK, on a ppABqJqi,j “ pBJAJqi,j :

ppABqJqi,j “ pABqj,i “

p
ÿ

k“1

aj,kbk,i “

p
ÿ

k“1

pAJqk,jpBJqi,k “

p
ÿ

k“1

pBJqi,kptAqk,j “ pBJAJqi,j .

Si A P MnpKq, on dit que A est

– symétrique si AJ “ A, c’est-à-dire que ai,j “ aj,i pour tous i, j,
– antisymétrique si AJ “ ´A, c’est-à-dire que ai,j “ ´aj,i pour tous i, j,.

On note SnpKq l’ensemble des matrices symétriques de MnpKq, et on note AnpKq l’ensemble des matrices
antisymétriques de MnpKq.

Définition - Matrices symétriques, matrices antisymétriques

Exemples.

˜

1 2 3
2 5 4
3 4 6

¸

P S3pRq,

˜

0 1 ´5
´1 0 2
5 ´2 0

¸

P A3pRq.

Remarques. – Les coefficients diagonaux d’une matrice antisymétrique sont tous nuls.
– Une matrice diagonale est à la fois triangulaire inférieure et supérieure.

II Matrices carrées
1. Matrices diagonales, matrices triangulaires

– On dit que A P MnpKq est diagonale si tous ses coefficients non diagonaux sont nuls. En d’autres termes,
pour tous i, j P J1, nK, i ­“ j ñ ai,j “ 0.

On écrit parfois A “ diagpλ1, . . . , λnq si A “

¨

˚

˚

˝

λ1 0 . . . 0

0 λ2

. . .
...

...
. . .

. . . 0
0 . . . 0 λn

˛

‹

‹

‚

.

Les matrices diagonales de la forme λIn sont appelées matrices scalaires. On note DnpKq l’ensemble des
matrices diagonales de MnpKq.

– On dit que A est triangulaire supérieure si tous ses coefficients strictement sous-diagonaux sont nuls. En
d’autres termes, pour tous i, j P J1, nK, i ą j ñ ai,j “ 0.
On dit que A est triangulaire supérieure si pour tous i, j P J1, nK, i ą j ñ ai,j “ 0.
On note respectivement T `

n pKq et T ´
n pKq l’ensemble des matrices triangulaires supérieures et inférieures

de MnpKq.

Définition - Matrices diagonales, matrices triangulaires

Exemples. I3 est diagonale,

˜

1 0 2
0 ´1 3
0 0 2

¸

est triangulaire supérieure,

˜

1 0 0
0 ´1 0
2 3 2

¸

est triangulaire inférieure.

Remarques. – Une matrice A P MnpKq est triangulaire supérieure si et seulement si AJ est triangulaire inférieure.
– Une matrice de MnpKq qui est à la fois triangulaire supérieure et inférieure est diagonale.

– DnpKq est stable par combinaison linéaire : si A “ diagpα1, . . . , αnq et B “ diagpβ1, . . . βnq et λ, µ P K,
alors λA ` µB “ diagpλα1 ` µβ1, . . . , λαn ` µβnq.

– DnpKq est stable par produit matriciel : si A “ diagpα1, . . . , αnq et B “ diagpβ1, . . . βnq, alors
AB “ diagpα1β1, . . . , αnβnq.

Théorème - Stabilité par combinaison linéaire et produit des matrices diagonales
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Démonstration. La stabilité par combinaison linéaire est évidente. Pour le produit, il suffit de remarquer que si
i, j, k P J1, nK, alors le terme ai,kbk,j est non nul si et seulement si i “ k “ j. On en déduit que si i ­“ j, pABqi,j “ 0,
et si i “ j, pABqi,i “ ai,ibi,i.

L’ensemble T `
n pKq des matrices triangulaires supérieures et l’ensemble T ´

n pKq des matrices triangulaires infé-
rieures sont stables par combinaison linéaire et par produit.
De plus, si A,B P T `

n pKq, alors pABqi,i “ ai,ibi,i. De même si A,B P T ´
n pKq.

Théorème - Stabilité par combinaison linéaire et produit des matrices triangulaires

Démonstration. La stabilité par combinaison linéaire est évidente. Intéressons-nous à la stabilité par produit de
T `

n pKq (le cas de T ´
n pKq est analogue) : soient A,B P T `

n pKq. Si i, j P J1, nK, alors

pABqi,j “

j
ÿ

k“i

ai,kbk,j , car
"

si k ă i, ai,k “ 0,
si k ą j, bk,j “ 0.

Ainsi, si i ą j, on a pABqi,j “ 0, donc AB P T `
n pKq. Par ailleurs, si i “ j, on a pABqi,i “

i
ř

k“i

ai,kbk,j “ ai,ibi,i.

2. Puissances d’une matrice carrée

Soit A P MnpKq. On définit par récurrence les puissances successives de A par
#

A0 “ In

@k P N, Ak`1 “ AAk “ Ak A

Définition - Puissances successives d’une matrice carrée

Remarques.

– Si A n’est pas une matrice carrée, on ne peut pas définir Ak.
– Si A P MnpKq et k, l P N, on a Ak`l “ AkAl “ AlAk. En particulier, A commute avec toutes ses puissances.
– Si A,B P MnpKq

Exercice 1. Soit B “

ˆ

1 1 1
1 1 1
1 1 1

˙

. Calculer B2, B3, puis conjecturer une expression de Bn, et la démontrer.

Si A P DnpKq, alors Ak P DnpKq. De même, si A P T `
n pKq, alors Ak P T `

n pKq.
De plus, dans chacun de ces cas, les coefficients diagonaux de Ak sont ak11, . . . , a

k
nn.

Théorème - Puissances d’une matrice diagonale, d’une matrice triangulaire

Démonstration. Le résultat s’obtient par récurrence immédiate à partir de la stabilité par produit de DnpKq et
T `

n pKq.

Remarque. Le résultat est bien sûr toujours valable pour T ´
n pKq.

Soient A,B P MnpKq deux matrices qui commutent. On a alors pour tout m P N,

pA ` Bqm “

m
ÿ

k“0

ˆ

m

k

˙

AkBm´k, et Am ´ Bm “ pA ´ Bq

m´1
ÿ

k“0

AkBm´1´k.

Théorème - Formule du binôme, formule de Bernoulli

Démonstration. Les preuves sont les mêmes que celles des formules dans R.

Exercice 2. Déterminer les puissances de la matrice A “

˜

1 1 1
0 1 1
0 0 1

¸

.
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3. Matrices inversibles

‹ Une matrice carrée A P MnpKq est dite inversible s’il existe une matrice B P MnpKq telle que AB “ In et
BA “ In. Dans ce cas, la matrice B, appelée inverse de A, est unique. On la note A´1.

‹ On appelle groupe linéaire et on note GLnpKq l’ensemble des matrices inversibles de MnpKq.

Définition-théorème - Matrice inversible, inverse d’une matrice

Démonstration. Supposons que A admette deux inverses B et B1. Alors on a B1 “ B1pABq “ pB1AqB “ B, car
AB “ B1A “ In. Ceci montre bien l’unicité de la matrice inverse de A.

Remarque. Si A P MnpKq est inversible, alors A´1 est inversible, et
`

A´1
˘´1

“ A.

Le résultat suivant assure que posséder un inverse à gauche (ou à droite) suffit pour qu’une matrice soit inversible.

Si A P MnpKq, alors : A est inversible ô A est inversible à gauche : DB P MnpKq, BA “ In
ô A est inversible à droite : DB P MnpKq, AB “ In.

Théorème

Démonstration. Plus tard.

Exemples.

– La matrice A “

ˆ

3 5
1 2

˙

est inversible, d’inverse A´1 “

ˆ

2 ´5
´1 3

˙

: en effet,
ˆ

3 5
1 2

˙ ˆ

2 ´5
´1 3

˙

“

ˆ

1 0
0 1

˙

.

– La matrice identité In est inversible, et I´1
n “ In.

– La matrice nulle 0n,n n’est pas inversible : pour toute matrice B P MnpRq, on a 0n,n B “ B 0n,n “ 0n,n ‰ In.

Remarque. Si A P MnpKq est inversible et B,C P Mn,ppKq, alors on a : AB “ AC ñ B “ C. On obtient en effet le
résultat simplement en multipliant à gauche par A´1.

Soit A P MnpKq.

(i). S’il existe une matrice B P Mn,ppRq non nulle telle que AB est nulle, alors A n’est pas inversible.
De même, s’il existe une matrice B P Mp,npRq non nulle telle que BA est nulle, alors A n’est pas inversible.

(ii). Si l’une des colonnes (resp. lignes) de A est une combinaison linéaire des autres colonnes (resp. lignes) de
A, alors A n’est pas inversible.

Théorème - Conditions suffisantes de non inversibilité

Démonstration.

(i). Supposons que A soit inversible, alors B “ A´1AB “ A´10n,p “ 0n,p, ce qui est une contradiction.
(ii). Si l’une des colonnes de A est combinaison linéaire des autres, alors il existe λ1, . . . , λn P K non tous nuls tels que

λ1C1pAq`. . .`λnCnpAq “ 0n,1. Ainsi, en posant X “ pλ1 ¨ ¨ ¨ λnqJ, on a AX “ λ1C1pAq`. . .`λnCnpAq “ 0n,1.
D’après le point précédent, comme X ­“ 0, A n’est pas inversible. Le cas des lignes est analogue.

Remarque. En particulier, si une colonne ou une ligne de A est nulle, A n’est pas inversible.

Exemples.

A “

˜

1 2 3
2 4 6
0 1 ´1

¸

R GL3pRq car L2pAq “ 2L1pAq, B “

˜

1 2 3
0 ´2 ´2
1 1 2

¸

R GL3pRq car C3pBq “ C1pBq ` C2pBq.

Une matrice diagonale D “ diagpλ1, . . . , λnq est inversible si et seulement si pour tout k P J1, nK, λk ­“ 0.
Dans ce cas, D´1 “ diag

`

1
λ1
, . . . , 1

λn

˘

.

Théorème - Inversibilité des matrices diagonales
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Démonstration.

– Si les scalaires λ1, . . . , λn sont tous non nuls, alors diagpλ1, . . . , λnq diag
`

1
λ1
, . . . , 1

λn

˘

“ diagp1, . . . , 1q “ In.
– Si l’un des scalaires λ1, . . . , λn est nul, alors D a une colonne nulle, et n’est pas inversible.

Soient A,B P MnpKq deux matrices inversibles et p P N. Alors

i. AB est inversible et pABq´1 “ B´1A´1.

ii. AJ est inversible et pAJq
´1

“ pA´1qJ.

iii. Ap est inversible et pApq
´1

“ pA´1q
p, on note alors son inverse A´p.

Théorème - Opérations sur les matrices inversibles

Démonstration.

i. On a
`

B´1A´1
˘

pABq “ B´1
`

A´1A
˘

B “ B´1InB “ B´1B “ In.
ii. On a pA´1qJAJ “ pAA´1qJ “ IJ

n “ In.
iii. On sait que A et A´1 commutent, donc

`

A´1
˘p
Ap “

`

A´1A
˘p

“ In
p “ In.

Remarque.

– D’après ce qui précède, l’ensemble GLnpKq est stable par produit et transposition.

– En revanche, GLnpKq n’est pas stable par somme (la somme de deux matrices inversibles n’est pas inversible
en général). Par exemple, In ` p´Inq n’est pas inversible.

III Systèmes linéaires et matrices
1. Systèmes linéaires

Soient n et p deux entiers naturels non nuls. Un système linéaire à n équations et p inconnues x1, . . . , xp est un
système d’équations de la forme

pS q

$

’

’

’

&

’

’

’

%

a1,1x1 ` a1,2x2 ` ¨ ¨ ¨ ` a1,pxp “ b1
a2,1x1 ` a2,2x2 ` ¨ ¨ ¨ ` a2,pxp “ b2

...
...

...
...

an,1x1 ` an,2x2 ` ¨ ¨ ¨ ` an,pxp “ bn

où ai,j P K et bi P K pour tous i P J1, nK et j P J1, pK.
L’ensemble des solutions de pS q est l’ensemble des p-uplets px1, . . . , xpq P Kp tels que pS q soit vérifié. Si pS q

admet au moins un solution, il est dit compatible il est incompatible sinon.

On peut récrire le système pS q sous forme matricielle en remarquant que :

si A “

˜ a1,1 ... a1,p

...
...

an,1 ... an,p

¸

, X “

˜ x1

...
xp

¸

, B “

˜

b1
...
bn

¸

, alors pS q ô AX “ B.

On dit alors que A est la matrice du système, et B son second membre. Lorsque B est nul, i.e. b1 “ . . . “ bn “ 0,
on dit que le système est homogène.

Définition - Système linéaire

Remarque. Trouver px1, . . . , xpq P Kp solution du système pS q est équivalent à trouver X P Mp,1pKq tel que AX “ B.
Seule diffère la représentation des solutions : sous forme de p-uplets ou de matrices colonnes.
Dans la suite, on identifiera donc souvent Kp et Mp,1pKq, qu’on notera parfois Kp, voire Kp en faisant un abus de
notation.

Exemple. Le sytème linéaire
"

5x ´ 3y ` 2z “ 2
2y ` 3z “ ´1

se récrit matriciellement
ˆ

5 ´3 2
0 2 3

˙

¨

˝

x
y
z

˛

‚“

ˆ

2
´1

˙

.

Remarque. Il est utile de connaître l’interprétation géométrique suivante.
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– si p “ 2 : l’ensemble des points px, yq du plan qui vérifient une contrainte de la forme ax` by “ α est une droite
(si a et b ne sont pas tous les deux nuls). Résoudre un système de la forme

"

a1,1x ` a1,2y “ b1
a2,1x ` a2,2y “ b2

revient à trouver l’ensemble des points du plan qui appartiennent aux deux droites. On cherche donc l’intersection
de ces droites, qui peut être vide (si les droites sont parallèles et distinctes), réduite à un point (si les droites
sont sécantes), ou une droite entière (si les droites sont confondues).

– si p “ 3 : l’ensemble des points px, y, zq de l’espace qui vérifient une contrainte de la forme ax ` by ` cz “ α est
un plan (si a, b et c ne sont pas tous les trois nuls). Résoudre un système de la forme

$

&

%

a1,1x ` a1,2y ` a1,3z “ b1
a2,1x ` a2,2y ` a2,3z “ b2
a3,1x ` a3,2y ` a3,3z “ b3

revient à trouver l’ensemble des points de l’espace qui appartiennent aux trois plans. On cherche donc l’inter-
section de ces plans, qui peut être vide, réduite à un point, une droite, ou un plan entier, selon les cas.

2. Systèmes équivalents, opérations élémentaires

On dit que deux systèmes linéaires sont équivalents s’ils ont le même ensemble de solutions.
Définition - Systèmes équivalents

Nous allons voir qu’on peut passer d’un système linéaire à un système équivalent en effectuant certaines opérations,
qu’on peut décomposer en les opérations élémentaires suivantes.

On appelle opérations élémentaires sur un système les opérations suivantes.

1. Echanger deux lignes Li et Lj : Li Ø Lj .
2. Multiplier une ligne Li par un scalaire λ P K‹ : Li Ð λLi.
3. Ajouter à une ligne un multiple d’une autre : Li Ð Li ` λLj , où λ P K et j ­“ i.

Les opérations élémentaires changent un système linéaire en un sytème linéaire équivalent.

Définition-théorème - Opérations élémentaires

Remarques.

– En combinant 3 et 2, on obtient que l’opération Li Ð λLi ` µLj , où λ ­“ 0 et j ­“ i change le système en un
système équivalent.

– En appliquant plusieurs fois 3, on constate qu’ajouter à une ligne une combinaison linéaire des autres lignes
change le système en un système équivalent.

3. Systèmes échelonnés

Une matrice A P Mn,ppRq est dite échelonnée si

– chaque ligne non nulle de A commence par strictement plus de zéros que la précédente,
– lorsqu’une ligne de A est nulle, toutes les suivantes le sont.

On dit qu’un système linéaire est échelonné s’il est associé à une matrice échelonnée. On appelle alors rang du
système le nombre de lignes non nulles de A.

Définition - Matrice échelonnée, système échelonné

Exemples.

– La matrice
ˆ

4 1 1
0 0 2

˙

, et donc le système linéaire
"

4x ` y ` z “ 2
2 z “ 3

sont échelonnés.
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– La matrice

¨

˚

˚

˝

1 1 1 1
0 0 1 ´1
0 0 2 3
0 0 0 5

˛

‹

‹

‚

, et donc le système linéaire

$

’

’

&

’

’

%

x ` y ` z ` t “ 2
z ´ t “ 3

2z ` 3t “ 1
5t “ 0

ne sont pas échelonnés.

Remarque. Si A P MnpRq est une matrice échelonnée, alors elle est triangulaire. En revanche, la réciproque est fausse,
comme le montre le dernier exemple ci-cessus.

Pour résoudre un système linéaire associé à une matrice échelonnée qui a exactement k lignes non nulles (c’est-
à-dire que le rang du système est k), on procède de la manière suivante.

1. On choisit k inconnues, qui seront dites principales.
2. On exprime les inconnues principales en fonction des autres, qui seront dites secondaires, et seront traitées

comme des paramètres.

Résolution de système linéaire échelonné

Exemple.
"

3 x ´ 2y ` z “ ´3
y ` 4z “ 3

ô

"

3 x ´ 2p3 ´ 4zq ` z “ ´3
y “ 3 ´ 4z

ô

"

x “ 1 ´ 3z
y “ 3 ´ 4z

Les solutions sont donc tous les triplets de la forme p1´ 3z, 3´ 4z, zq, où z P R. On écrit cet ensemble sous la forme :

tp1 ´ 3z, 3 ´ 4z, zq, z P Ru “ tp1, 3, 0q ` zp´3,´4, 1q, z P Ru.

4. Méthode du pivot de Gauss

Il s’agit de se ramener au cas précédent, que l’on sait traiter. On utilise les opérations élémentaires pour se ramener à
un système équivalent qui est triangulaire ou échelonné.

Exemple. Considérons $

&

%

x ` 2y ´ 4z “ 0
5x ` 4y ´ 2z “ 12
3x ` 3y ´ 5z “ 2

(S1)

– Première étape : On utilise les opérations élémentaires pour transformer le système en un système équivalent
où l’inconnue x n’apparaît pas dans les deux dernières équations. Puis, on transforme ce dernier système en un
système équivalent où les inconnues x et y n’apparaissent pas dans la dernière équation.

$

&

%

x ` 2y ´ 4z “ 0
5x ` 4y ´ 2z “ 12
3x ` 3y ´ 5z “ 2

ô

$

&

%

x ` 2y ´ 4z “ 0
´6y ` 18z “ 12 L2 Ð L2 ´ 5L1

´3y ` 7z “ 2 L3 Ð L3 ´ 3L1

ô

$

&

%

x ` 2y ´ 4z “ 0
´y ` 3z “ 2 L2 Ð L2{6
´3y ` 7z “ 2

ô

$

&

%

x ` 2y ´ 4z “ 0
´y ` 3z “ 2

´2z “ ´4 L3 Ð L3 ´ 3L2

– Seconde étape : On résout le système triangulaire ou échelonné :

pS1q ô

$

&

%

x “ ´2y ` 4z
y “ 3z ´ 2
z “ 2

ô

$

&

%

x “ 0
y “ 4
z “ 2

Tout système linéaire pS q est équivalent à un système linéaire échelonné, obtenu à partir de pS q par opérations
élémentaires.

Théorème - Pivot de Gauss
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Nous décrivons ici l’algorithme, dit du pivot de Gauss, qui permet d’obtenir un système linéaire échelonné par trans-
formations élémentaires, à partir d’un système linéaire quelconque

pSq

$

’

’

’

&

’

’

’

%

a1,1x1 ` a1,2x2 ` ¨ ¨ ¨ ` a1,pxp “ b1 L1

a2,1x1 ` a2,2x2 ` ¨ ¨ ¨ ` a2,pxp “ b2 L2

...
...

...
...

an,1x1 ` an,2x2 ` ¨ ¨ ¨ ` an,pxp “ bn Ln

– Si a1,1 ­“ 0 : on utilise L1 pour éliminer x1 des autres lignes du systèmes, en faisant les opérations suivantes :

L2 Ð L2 ´
a2,1
a1,1

L1

...
Ln Ð Ln ´

an,1
a1,1

L1

– Si a1,1 “ 0, il y a deux cas de figure :

– s’il existe une ligne i telle que ai,1 ­“ 0, alors on échange les lignes 1 et i : L1 Ø Li, et on procède ensuite
comme ci-dessus,

– sinon, x1 est quelconque : c’est une inconnue secondaire qui peut être traitée comme un paramètre, et on
passe à x2.

À la suite de cette étape, on obtient donc que le système équivaut à
$

’

’

’

&

’

’

’

%

a1,1x1 ` a1,2x2 ` ¨ ¨ ¨ ` a1,pxp “ b1
a1
2,2x2 ` ¨ ¨ ¨ ` a1

2,pxp “ b1
2

...
...

...
a1
n,2x2 ` ¨ ¨ ¨ ` a1

n,pxp “ b1
n

On peut ensuite renouveler cette opération sur le système constitué des n ´ 1 dernières équations. Et ainsi de suite,
jusqu’à l’obtention d’un système échelonné.

Exemples. 1.

$

&

%

x ` y ` z “ 1
2x ` y ` z “ ´1
x ´y ` 2z “ 1

ô

$

&

%

x ` y ` z “ 1
´ y ´z “ ´3 L2 Ð L2 ´ 2L1

´2y ` z “ 0 L3 Ð L3 ´ L1

ô

$

&

%

x ` y ` z “ 1
´ y ´z “ ´3

3 z “ 6 L3 Ð L3 ´ 2L2

ô

$

&

%

x “ 1 ´ y ´ z “ ´2
y “ 3 ´ z “ 1

z “ 2

L’unique solution du système est p´2, 1, 2q.

2.

$

&

%

x ` 2y ` z “ 1
2x ` 3y ´ z “ 2

´x ´ y ` 2z “ ´ 1
ô

$

&

%

x ` 2y ` z “ 1
´ y ´ 3z “ 0 L2 Ð L2 ´ 2L1

y ` 3z “ 0 L3 Ð L3 ` L1

ô

$

&

%

x ` 2y ` z “ 1
´ y ´ 3z “ 0

0 “ 0 L3 Ð L3 ` L2

ô

"

x “ 1 ´ 2y ´ z “ 1 ` 5z
y “ ´ 3z

L’ensemble des solutions est tp1 ` 5z,´3z, zq, z P Ru “ tp1, 0, 0q ` zp5,´3, 1q, z P Ru. La représentation dans
R3 des solutions est donc la droite passant par le point p1, 0, 0q, de vecteur directeur v⃗ : p5,´3, 1q.
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Exercice 3. Résoudre les systèmes suivants.

1.

$

&

%

2x ` 3y ´ z “ ´1
x ` 2y ` 3z “ 2
3x ` 4y ´ 5z “ ´4

2.

$

&

%

x ´ y ` z “ ´2
2x ` 3z “ 7
x ` 5y ´ z “ 1

5. Structure de l’ensemble des solutions

Dans la suite, on considère A P Mn,ppKq et B P Mn,1pKq, et le système linéaire

AX “ B (S )

On appelle système homogène associé au système (S ) le système linéaire

AX “

¨

˚

˚

˚

˝

0

0

˛

‹

‹

‹

‚

. (S0)

Définition - Système homogène associé

Remarque. On remarque que X “ 0p,1 est toujours solution du système homogène (S0). Par ailleurs, si X,Y sont
des solutions de (S0) et λ, µ P K, alors λX ` µY est encore une solution de (S0).
Par conséquent : – soit (S0) n’a qu’une seule solution : 0p,1,

– soit (S0) a des solutions non nulles, et (S0) a alors une infinité de solutions.

Le système (S ) est compatible si et seulement si B est une combinaison linéaire des colonnes de A. Dans ce cas,
si XP est une solution particulière de (S ), alors l’ensemble des solutions de (S ) est décrit par

tXP ` X, X solution du système homogène (S0)u.

Théorème - Structure de l’ensemble des solutions

Démonstration. On a : Dpx1, . . . , xpq P Kp, A

¨

˚

˚

˚

˝

x1

xp

˛

‹

‹

‹

‚

“ B ô Dpx1, . . . , xpq P Kp,
p
ř

j“1

xjCjpAq “ B

ô B est combinaison linaire des colonnes de A.

D’où la caractérisation de la compatibilité de (S ). Ensuite, si X P Kp, on a :

AX “ B ô AX “ AXP ô ApX ´ XPq “ 0 ô X ´ XP est une solution de (S0)
ô il existe X0 solution de (S0) telle que X “ XP ` X0.

Ainsi, l’ensemble des solutions est tXP ` X0, X0 est solution de (S0)u.

Remarque. Il n’y a que trois cas possibles pour le système linéaire (S ) : – soit (S ) n’a pas de solution,
– soit (S ) a une unique solution,
– soit (S ) a une infinité de solutions.

6. Inversibilité et systèmes linéaires

Une matrice A P MnpKq est inversible si et seulement si pour tout second membre B P Kn, le système linéaire
AX “ B a une unique solution.

Théorème - Inversibilité et systèmes linéaires

Remarque. On appelle parfois système de Cramer un système linéaire qui possède une unique solution.

On peut donc reformuler le résultat ci-dessus de la manière suivante : A est inversible si et seulement si pour tout
B P Kn, le système AX “ B est de Cramer.

Démonstration. Si A est inversible, alors pour toute matrice B P Mn,1pKq, on a AX “ B ô X “ A´1B, donc le
système AX “ B a une unique solution, qui est A´1B.
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Si pour tout second membre B P Mn,1pKq, le système AX “ B est de Cramer, alors on note C1, . . . , Cn les colonnes
de In, et pour tout i P J1, nK, on note Xi l’unique solution du système AX “ Ci. On a alors

A

˜

X1 . . . Xn

¸

“

˜

AX1 . . . AXn

¸

“

˜

C1 . . . Cn

¸

“ In,

donc A est inversible.

Nous allons voir qu’il suffit en fait que le système homogène AX “ 0n,1 ait une unique solution pour que la matrice
A soit inversible. Dans ce cas, comme on l’a déjà remarqué, l’unique solution du système homogène est 0n,1.

On appelle noyau d’une matrice Mn,ppKq l’ensemble des solutions du système homogène AX “ 0n,1, on le note
KerA :

KerA “ tX P Kp, AX “ 0n,1u.

Définition - Noyau d’une matrice

Si A P MnpKq, alors
A est inversible ô KerA “ t0n,1u.

En d’autres termes, A est inversible si et seulement si le système AX “ 0n,1 a pour unique solution 0n,1.

Théorème - Inversibilité et noyau

Démonstration. Le sens direct est bien sûr une conséquence du théorème précédent. Le sens réciproque sera démontré
plus tard.

IV Méthodes de calcul d’inverse
1. Inverse des matrices de M2pKq

Il est aisé de déterminer si une matrice de M2pKq est inversible, et de trouver son inverse dans ce cas. Nous verrons
que la situation est bien différente pour les matrices de plus grande taille.

Si A “

ˆ

a b
c d

˙

P M2pKq, alors A est inversible si et seulement si ad ´ bc ­“ 0. Dans ce cas,

A´1 “
1

ad ´ bc

ˆ

d ´b
´c a

˙

.

On appelle déterminant de A le scalaire ad ´ bc, qu’on note detA ou encore
ˇ

ˇ
a b
c d

ˇ

ˇ.

Théorème - Inversibilité des matrices de M2pKq

Démonstration. On remarque que
`

a b
c d

˘ `

d ´b
´c d

˘

“
`

ad´bc 0
0 ad´bc

˘

. Par conséquent,

– si ad ´ bc ­“ 0, alors A ˆ 1
ad´bc

`

d ´b
´c d

˘

“ I2, donc A est inversible, et A´1 “ 1
ad´bc

`

d ´b
´c d

˘

.

– si ad ´ bc “ 0, alors A
`

d ´b
´c d

˘

“ 02,2, ce qui implique que A n’est pas inversible.

Remarque. Nous généraliserons plus tard ce résultat aux matrices de plus grande taille, mais nous verrons que le
calcul du déterminant est plus délicat.

2. Polynôme annulateur et inversibilité

Lorsqu’on parvient à écrire une puissance d’une matrice A P MnpKq comme une combinaison linéaire d’autres puis-
sances de A, on peut dans certains cas conclure à l’inversibilité de A, et calculer son inverse.
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Polynômes annulateurs et calcul d’inverse. Si A P MnpKq vérifie :

akA
k ` . . . ` a1A ` a0In “ 0n,n,

où a0, . . . , ak P K, on dit que le polynôme akX
k ` . . . ` a1X ` a0 est un polynôme annulateur de A.

Si a0 ­“ 0, on peut en déduire que A est inversible et calculer aisément son inverse :

´
ak
a0

Ak ` . . . ´
a1
a0

A “ In, donc A

ˆ

´
ak
a0

Ak´1 ` . . . ´
a1
a0

In

˙

“ In.

Ceci montre que A est inversible, et A´1 “ ´ak

a0
Ak´1 ` . . . ´ a1

a0
In.

Exemple. Si A P MnpKq vérifie A3 ´ 3A “ 2In, alors ApA2 ´ 3Inq “ 2In, puis A
`

1
2

`

A2 ´ 3In
˘˘

“ In, donc A est
inversible, et son inverse est A´1 “ 1

2

`

A2 ´ 3In
˘

.

Remarque. Si a0 “ 0 dans la relation ci-dessus, le résultat devient faux. Par exemple, si A “

´

0 1
0 1

¯

, alors A2 “ A,
mais A n’est pas inversible.

3. Résolution d’un système linéaire

On sait que A P MnpKq est inversible si et seulement si pour tout second membre B P Mn,1pKq, le système linéaire
AX “ B est de Cramer. Ceci fournit un moyen de déterminer si A P MnpKq est inversible, et de déterminer son
inverse le cas échéant.
On fixe un second membre quelconque B P Mn,1pKq, et on échelonne le système AX “ B par pivot de Gauss.

– Si le système est de rang strictement intérieur à n, alors A n’est pas inversible.
– Si le système est de rang n, alors A est inversible, on trouve X “ A´1B puis A´1 par identification.

Exemple. Pour déterminer l’inverse de la matrice A “

¨

˝

1 0 1
2 ´1 1

´1 1 ´1

˛

‚, on note B “

¨

˝

a
b
c

˛

‚ et on résout AX “ B :

AX “ B ô

$

&

%

x `z “ a
2x ´y `z “ b

´x `y ´z “ c
ô

$

&

%

x `z “ a
´y ´z “ b ´ 2a
y “ c ` a

ô

$

&

%

x `z “ a
´y ´z “ b ´ 2a

´z “ ´a ` b ` c

ô

$

&

%

x “ b `c
y “ a `c
z “ a ´b ´c

L’unique solution est X “

˜

b ` c
a ` c

a ´ b ´ c

¸

“

˜

0 1 1
1 0 1
1 ´1 ´1

¸ ˜

a
b
c

¸

, donc A est inversible et A´1 “

˜

0 1 1
1 0 1
1 ´1 ´1

¸

.

4. Algorithme de Gauss-Jordan

Nous avons introduit trois opérations élémentaires sur les systèmes linéaires. Nous allons à présent introduire les
mêmes opérations sur les matrices :

– On note Li Ø Lj l’opération qui consiste à échanger les lignes i et j d’une matrice.
– On note Li Ð λLi l’opération qui consiste à multiplier par λ P K la ligne i.
– On note Li Ð Li ` λLj l’opération qui consiste à ajouter λLj à la ligne Li.

On note par ailleurs Ci Ø Cj , Ci Ð λCi et Ci Ð Ci ` λCj les opérations analogues sur les colonnes.

Nous allons voir que ces opérations peuvent être obtenues par multiplication (à gauche ou à droite) par des matrices
bien choisies. On considère i, j P J1, nK et λ P K‹.
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– On appelle matrice de transposition une matrice de la forme

i

j

Ti,j “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

. . .
1

0 1
1

. . .
1

1 0
1

. . .
1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

On remarque que multiplier une matrice par Ti,j à gauche revient à effectuer l’opération Li Ø Lj , et
multiplier par Ti,j à droite revient à effectuer l’opération Ci Ø Cj .

– On appelle matrice de dilatation une matrice de la forme

iDipλq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
. . .

1
λ

1
. . .

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

On remarque que multiplier une matrice par Dipλq à gauche revient à effectuer l’opération Li Ð λLj ,
et multiplier par Dipλq à droite revient à effectuer l’opération Ci Ð λCi.

– On appelle matrice de transvection une matrice de la forme Ti,jpλq “ In ` λEi,j , c’est-à-dire

i

j

Ti,jpλq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
. . .

1 λ
. . .

1
. . .

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

On remarque que, dans le cas des matrices carrées, ces trois types de matrices sont inversibles. Plus précisément, si
i, j P J1, nK et λ P K‹,

T´1
i,j “ Ti,j , Dipλq´1 “ Di

`

1
λ

˘

, Ti,jpλq´1 “ Ti,jp´λq.

Par conséquent, multiplier une matrice (à gauche ou à droite) par une matrice d’opération élémentaire ne change pas
le caractère inversible de la matrice.

Si on parvient, par opérations élémentaires successives sur les lignes, à obtenir In à partir d’une matrice A, alors,
en notant M1, . . . ,Mk les matrices des opérations élémentaires successives :

Mk . . .M1A “ In, c’est-à-dire PA “ In, où P “ Mk . . .M1.

Ainsi, on aura obtenu que A est inversible, d’inverse P . Pour trouver A´1 “ PIn, il suffit donc d’effectuer les
mêmes opérations élémentaires successives sur la matrice In.

Invrersion par Gauss-Jordan

Dans la pratique, on pourra effectuer en parallèle les mêmes opérations sur A et sur In, d’après ce qui précède, lorsqu’on
aura obtenu la matrice In à partir de A, la matrice transformée à partir de In ne sera autre que l’inverse de A.

Lycée Montesquieu 15
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Exemple. Retrouvons l’inverse de la matrice A de l’exemple de la page 14.

¨

˝

1 0 1
2 ´1 1

´1 1 ´1

˛

‚

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

¨

˝

1 0 1
0 ´1 ´1
0 1 0

˛

‚

¨

˝

1 0 0
´2 1 0
1 0 1

˛

‚

¨

˝

1 0 1
0 ´1 ´1
0 0 ´1

˛

‚

¨

˝

1 0 0
´2 1 0
´1 1 1

˛

‚

¨

˝

1 0 1
0 1 1
0 0 1

˛

‚

¨

˝

1 0 0
2 ´1 0
1 ´1 ´1

˛

‚

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

¨

˝

0 1 1
1 0 1
1 ´1 ´1

˛

‚

Ainsi, A P GL3pRq et A´1 “

¨

˝

0 1 1
1 0 1
1 ´1 ´1

˛

‚.

5. Inversibilité des matrices triangulaires

Une matrice triangulaire A P MnpKq est inversible si et seulement si tous ses coefficients diagonaux sont non
nuls.
Dans ce cas, les coefficients diagonaux de A´1 sont les inverses des coefficients diagonaux de A.

Théorème - Inversibilité des matrices triangulaires

Démonstration. Le résultat repose sur l’algorithme de Gauss-Jordan : s’en convaincre !
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