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Chapitre 8

Compléments sur les nombres réels

| Borne supérieure, borne inférieure

On considere A une partie de R.

Définition - Borne supérieure, borne intérieure
— Si A admet un plus petit majorant, on 'appelle borne supérieure (ou supremum) de A et on le note sup A.
— Si A admet un plus grand minorant, on ’appelle borne inférieure (ou infimum) de A et on le note inf A.

Exemple. L’ensemble |0, 1] a pour ensemble de minorants | — o0, 0] qui a pour maximum 0, ainsi inf A = 0.

Remarque. Par définition, si M est un majorant de A, on a immédiatement sup A < M. En d’autres termes, si
Vre A, x < M, alors sup A < M. On a bien siir un énoncé analogue pour inf A.

' Théoréme

Si A posséde un maximum (resp. un minimum), alors A admet une borne supérieure (resp. une borne inférieure),
et sup A = max A (resp. inf A = min A).

Démonstration. On suppose que A admet un maximum, qu’on note M. On sait que M est un majorant de A.
Montrons que M est le plus petit majorant de A : si M’ est un majorant de A, alors comme M € A, on a M < M’.
Ceci conclut. O

Le résultat fondamental qui suit repose sur les axiomes permettant la constriction de I’ensemble R. Cette construction
étant hors programme, nous admettrons cette propriété, qui est par ailleurs bien intuitive.

Théoreme - Propriété de la borne supérieure, propriété de la borne inférieure

— Toute partie non vide majorée de R posséde une borne supérieure.
— Toute partie non vide minorée de R posséde une borne inférieure.

Remarque. Par convention, si A n’est pas majorée, on note parfois sup A = 4+00. Si A n’est pas minorée, on note
inf A= —o0.

Exemple. Si A est une partie non vide de R et x € R, on appelle distance de x a A le réel
d(z,A) = inf{|z —a|, a€ A}.
Par exemple, si A =]0,1[, on a d(2,4) =1, d(%,4) =0, d(0,4) =0.

Théoréme - Caractérisation de la borne supérieure

Si A est non vide et majorée, alors
M est un majorant de A

M = supA
TP {Va>0,3xeA,x>M—s

La caractérisation traduit le fait que sup A est un majorant de A, et qu’on peut trouver un élément de A arbitrairement
proche de M. Ceci se réerit : Ve > 0, |M —e, M| n A =0@.
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De méme, si A est non vide et minorée, alorsona: M = infA <
Ve>0, dxe A, z<M+e¢

Remarque. On a en fait : ¢ M est un majorant de A < supA

< M,
o Ve>0,dxeA, x>M-—-¢ < supd

{ M est un minorant de A
M
>

M.
Démonstration.

— Supposons que M = sup A. Alors M est un majorant de A par définition. Montrons Ve > 0, 3z € A, x > M —e.
Soit € > 0. Comme M est le plus petit majorant de A, le réel M — ¢ n’est pas un majorant de A, c’est-a-dire
qu’il existe x € A tel que z > M —e.

— Soit M un majorant de A tel que Ve >0, Jz € A, x > M — . Montrons M = sup A.

Raisonnons par ’absurde et supposons que M = sup A, c’est-a-dire qu’il existe un majorant M’ de A tel que
M’ < M. On pose e = M — M’ > 0, on sait qu’il existe alors x € A tel que z > M — ¢, c’est-a-dire x > M’. Ceci
est une contradiction car M’ est un majorant de A. Ceci conclut. O

Il Approximation des réels

1. Partie entiére

Le résultat qui suit repose sur la propriété de la borne supérieure.

" Théoréeme - Propriété d’Archiméde de R

Pour tout x € R, il existe un n € Z tel que n > x.

Remarque. La propriété d’Archimede entraine qu’une partie A de N qui est majorée par un réel l'est aussi par un
entier. Par conséquent, elle admet un plus grand élément.

On peut déduire de ce résultat l'existence de la partie entiere, que nous avons admise dans le Chapitre CALCUL
ALGEBRIQUE DANS R.

" Théoréme - Existence et unicité de la partie entiére

Soit x € R. Il existe un unique n € Z tel que n < x < n + 1. On appelle cet
entier la partie entiére de z, et on le note |z|.

lz] = 1 12
n—1 n n+1 n+ 2

Démonstration.

— FEuzistence. Supposons que x = 0. On considére ’ensemble A = {k € N, k < x} qui est non vide car 0 € A.
Comme A est une partie de N majorée par x, on sait qu’elle est majorée dans N, donc admet un plus grand
élément qu’on note n. Ona alorsn <z etn+1>xcarn+1¢ A, ce quidonnen <z <n+ 1.

Le cas ¢ < 0 est analogue, en considérant —z.

— Unicité. Si n et m sont deux entiers qui conviennent, alors n < z <n+1et m < x < m+ 1, ce qui donne
n<m+letm<n+1, puis —1 <n—m < 1. Comme n — m est un entier, on a alors n —m = 0. O

2. Densité de Q dans R

Définition - Densité
| On dit qu'une partie de R est dense dans R si pour tous z,y € R avec x < y, il existe a € A tel que a € [z, y].

Remarques.

— En d’autres termes, A c R est dense si et seulement si tout intervalle I non réduit & un point contient au moins
un élément de A (i.e. I n A = @).
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— Il est aisé de voir que si A € Z(R),
Aest dense dans R < VaxeR, Ve>0, Ja€ A, |z —a| <e.

En d’autres termes, A est dense dans R si et seulement si tout réel = est approchable arbitrairement prés par
des éléments de A.

Démonstration. Si A est dense dans R et z € R. On fixe € > 0, la densité de A donne alors 'existence de a € A
tel que a €]z — e,z + €[, donc |z —a| < e.

SivVzeR, Ve >0, Ja€ A, |zt —a| <, on fixe z,y € R tels que z < y. On pose z = +(z +y) et e = L(y — z).

On sait alors qu'il existe a € A tel que |z — a] < ¢, c’est-a-dire 2 — e < a < z + ¢, ou encore x < a < y, ce qui
conclut. O

" Théoréme - Densité de Q et R\Q dans R
Les ensembles Q et R\Q sont denses dans R.

Démonstration.

— Soit z € R. On fixe € > 0. On sait qu’il existe un entier ¢ € N* tel que g > %,

et donc % < e. En notant p = |zq|, on a alors IR x

4
1

Q=
Qo+
Qw4+
(S}
S

1 0
p<zq<p+1, donc P P p P
q

<Kz<—-+-, et = <zr<=+c¢
q q q

On a alors 0 < x — % < g, done |z — §| < €. Par conséquent, on a montré que Q est dense dans R.

— Soit x € R. On fixe ¢ > 0. On sait par le point précédent qu’il existe ¢ € Q tel que |(z — v/2) — ¢| < &, donc
|t —r| <ecavecr =¢q++/2 OronareR\Q (sinon, v2 =1 —ge Q, et il y a contradiction). On a donc bien
montré que R\Q est dense dans R. O

3. Densité de D dans R

" Théoréme - Densité de D dans R

L’ensemble des décimaux D = {min, keZ, ne N} est dense dans R.

Démonstration. Soient x € R et ¢ > 0. Soit n € N tel que 10" > % (il suffit de choisir un entier n > *11?180)' Par
définition de la partie entiére, on a [10"z| < 10"z < [10™z| + 1. Ainsi, en posant k = [10"z], on a

LI . (1)

— <z —_— 4+ —.

10" 10 107
Par conséquent, comme 10% <gonal<z— win < e. Comme y = win € D, on a bien trouvé un nombre y € D tel
que |z — y| < €, ce qui conclut. O

Remarque. Pour tout n € N, 'encadrement (@) obtenu dans la démonstration ci-dessus fournit une approximation
décimale d’un réel x a une précision 10™" fixée :

_k_
10"

k 1 . . . .
Tow T 10w €st une approximation de z dite par ezces.

— le décimal est une approximation de x dite par défaut,

— le décimal

i1l Droite achevée

On cherche a prolonger I’ensemble R de maniere a assurer que toute partie du nouvel ensemble admette une borne
supérieure et une borne inférieure. Pour ce faire, on introduit deux nouveaux éléments +o0 et —o0, et on prolonge la
relation d’ordre et les opérations sur R.

Définition - Droite achevée R
On appelle droite achevée 1'ensemble R = R U {—c0, +-o0}.

— On prolonge I'ordre < & R en posant —o0 < x et x < +00 pour tout z € R.
— On prolonge ’addition en posant :
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+0+2z =+ (+®) = 40 et —w+zx = x+ (—0) = —© pour tout z € R,
+00 + (+0) = +0, et —o0+ (—©) = —c0.
— On prolonge la multiplication et I'inverse en posant : +%.O = ﬁ = 0, et pour tout = € R\{0},

z x (+00) = (+0) xx = { too siz>0,

—oo siz >0,
—o0 sizx<0

400 siz <O

/A Les formes 0 x (+0) et (—o0) + (+0) sont indéterminées dans R.

On étend la définition de bornes supérieures et inférieures aux parties de R avec la méme définition : si A R, alors
sup A (resp. inf A) est le plus petit majorant (resp. plus grand minorant) de A dans R, §’il existe.

On peut alors déduire du résultat dans R et des prolongements ci-dessus le résultat suivant.

Théoréme - Bornes supérieures, inférieures dans R

Toute partie de R admet une borne supérieure et une borne inférieure dans R.

Si A admet une borne supérieure (resp. inférieure) dans R, alors sa borne supérieure (resp. inférieure) dans R
est la méme.

Remarques.

— Si A est non majorée dans R, alors son seul majorant dans R est +00, donc sup A = +00 dans R. Ceci coincide
avec la notation présentée plus haut. De méme, si A n’est pas minorée dans R, alors inf A = —o0.

— Comme l'ensemble des majorants de @ dans R est R entier, on a sup @ = —00. De méme, inf @ = +00.

IV Intervalles de R, de R

On rappelle que les intervalles de R sont de 'une des formes suivantes :
o [a,b] avec a,b € R, o [a,b] avec a € R, be R u {+w},
o Ja,b[, a,b e R, o la,b] avec a e Ru {—w}, be R.

Plus généralement les intervalles de R sont de la forme [a, b], [a,b[, ]a,b] ou Ja,b[, ot a,b € R avec a < b.

Théoreme - Caractérisation des intervalles de R

Si I est une partie de R, alors I est intervalle si et seulement si Va,y € I, [z,y] < I.

Démonstration.

— Soit I est un intervalle de R. On traite le cas ot I est de la forme I = [a,b] avec a,b € R, les autres étant
similaires. Soient z,y € I avec x < y. Si z € [z,y], alorson a a < x < 2 <y < b, donc z € [a,b] = I.

— Supposons que Vx,y € I, [z,y] < I. Si I est majoré, on note b = sup I, sinon, on pose b = +00. Si I est minoré,

on note a = inf I, sinon on pose a = —oo. On suppose par exemple que a € I et b ¢ I et on montre que I = [a, b

(les autres cas sont similaires). On a clairement I < [a, b[, et si x € [a, b[, alors = < b, donc il existe y € I tel que

y > x. Comme a,y € I, [a,y] = I, donc x € I. O
Remarques.

— La méme caractérisation est valable pour les intervalles de R : I < R est intervalle de R si et seulement si
Ve,yel, [z,y] < 1.

— On dit des ensembles A qui vérifient la propriété Va,y € A, [x,y] < A qu’ils sont convexes. La caractérisation
ci-dessus exprime que les intervalles de R sont les convexes de R.
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