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Chapitre 8

Compléments sur les nombres réels

I Borne supérieure, borne inférieure
On considère A une partie de R.

– Si A admet un plus petit majorant, on l’appelle borne supérieure (ou supremum) de A et on le note supA.
– Si A admet un plus grand minorant, on l’appelle borne inférieure (ou infimum) de A et on le note inf A.

Définition - Borne supérieure, borne intérieure

Exemple. L’ensemble s0, 1s a pour ensemble de minorants s ´ 8, 0s qui a pour maximum 0, ainsi inf A “ 0.

Remarque. Par définition, si M est un majorant de A, on a immédiatement supA ď M . En d’autres termes, si
@x P A, x ď M , alors supA ď M . On a bien sûr un énoncé analogue pour inf A.

Si A possède un maximum (resp. un minimum), alors A admet une borne supérieure (resp. une borne inférieure),
et supA “ maxA (resp. inf A “ minA).

Théorème

Démonstration. On suppose que A admet un maximum, qu’on note M . On sait que M est un majorant de A.
Montrons que M est le plus petit majorant de A : si M 1 est un majorant de A, alors comme M P A, on a M ď M 1.
Ceci conclut.

Le résultat fondamental qui suit repose sur les axiomes permettant la constriction de l’ensemble R. Cette construction
étant hors programme, nous admettrons cette propriété, qui est par ailleurs bien intuitive.

– Toute partie non vide majorée de R possède une borne supérieure.
– Toute partie non vide minorée de R possède une borne inférieure.

Théorème - Propriété de la borne supérieure, propriété de la borne inférieure

Remarque. Par convention, si A n’est pas majorée, on note parfois supA “ `8. Si A n’est pas minorée, on note
inf A “ ´8.

Exemple. Si A est une partie non vide de R et x P R, on appelle distance de x à A le réel

dpx,Aq “ inft|x ´ a|, a P Au.

Par exemple, si A “s0, 1r, on a dp2, Aq “ 1, d
`

1
2 , A

˘

“ 0, dp0, Aq “ 0.

Si A est non vide et majorée, alors

M “ supA ô

#

M est un majorant de A

@ε ą 0, Dx P A, x ą M ´ ε

Théorème - Caractérisation de la borne supérieure

La caractérisation traduit le fait que supA est un majorant de A, et qu’on peut trouver un élément de A arbitrairement
proche de M . Ceci se récrit : @ε ą 0, sM ´ ε,M s X A ­“ ∅.

A Mx

ε
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De même, si A est non vide et minorée, alors on a : M “ inf A ô

#

M est un minorant de A

@ε ą 0, Dx P A, x ă M ` ε

Remarque. On a en fait : ˛ M est un majorant de A ô supA ď M ,
˛ @ε ą 0, Dx P A, x ą M ´ ε ô supA ě M .

Démonstration.

– Supposons que M “ supA. Alors M est un majorant de A par définition. Montrons @ε ą 0, Dx P A, x ą M ´ ε.
Soit ε ą 0. Comme M est le plus petit majorant de A, le réel M ´ ε n’est pas un majorant de A, c’est-à-dire
qu’il existe x P A tel que x ą M ´ ε.

– Soit M un majorant de A tel que @ε ą 0, Dx P A, x ą M ´ ε. Montrons M “ supA.
Raisonnons par l’absurde et supposons que M ­“ supA, c’est-à-dire qu’il existe un majorant M 1 de A tel que
M 1 ă M . On pose ε “ M ´M 1 ą 0, on sait qu’il existe alors x P A tel que x ą M ´ ε, c’est-à-dire x ą M 1. Ceci
est une contradiction car M 1 est un majorant de A. Ceci conclut.

II Approximation des réels
1. Partie entière

Le résultat qui suit repose sur la propriété de la borne supérieure.

Pour tout x P R, il existe un n P Z tel que n ą x.
Théorème - Propriété d’Archimède de R

Remarque. La propriété d’Archimède entraîne qu’une partie A de N qui est majorée par un réel l’est aussi par un
entier. Par conséquent, elle admet un plus grand élément.

On peut déduire de ce résultat l’existence de la partie entière, que nous avons admise dans le Chapitre Calcul
algébrique dans R.

Soit x P R. Il existe un unique n P Z tel que n ď x ă n ` 1. On appelle cet
entier la partie entière de x, et on le note txu.

n

txu

n ´ 1 n ` 2n ` 1

x

Théorème - Existence et unicité de la partie entière

1 2 3´1

Démonstration.

– Existence. Supposons que x ě 0. On considère l’ensemble A “ tk P N, k ď xu qui est non vide car 0 P A.
Comme A est une partie de N majorée par x, on sait qu’elle est majorée dans N, donc admet un plus grand
élément qu’on note n. On a alors n ď x et n ` 1 ą x car n ` 1 R A, ce qui donne n ď x ă n ` 1.
Le cas x ă 0 est analogue, en considérant ´x.

– Unicité. Si n et m sont deux entiers qui conviennent, alors n ď x ă n ` 1 et m ď x ă m ` 1, ce qui donne
n ă m ` 1 et m ă n ` 1, puis ´1 ă n ´ m ă 1. Comme n ´ m est un entier, on a alors n ´ m “ 0.

2. Densité de Q dans R

On dit qu’une partie de R est dense dans R si pour tous x, y P R avec x ă y, il existe a P A tel que a P rx, ys.
Définition - Densité

Remarques.

– En d’autres termes, A Ă R est dense si et seulement si tout intervalle I non réduit à un point contient au moins
un élément de A (i.e. I X A ­“ ∅).
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– Il est aisé de voir que si A P PpRq,

A est dense dans R ô @x P R, @ε ą 0, Da P A, |x ´ a| ď ε.

En d’autres termes, A est dense dans R si et seulement si tout réel x est approchable arbitrairement près par
des éléments de A.

Démonstration. Si A est dense dans R et x P R. On fixe ε ą 0, la densité de A donne alors l’existence de a P A
tel que a Psx ´ ε, x ` εr, donc |x ´ a| ă ε.
Si @x P R, @ε ą 0, Da P A, |x ´ a| ď ε, on fixe x, y P R tels que x ă y. On pose z “ 1

2
px ` yq et ε “ 1

2
py ´ xq.

On sait alors qu’il existe a P A tel que |z ´ a| ă ε, c’est-à-dire z ´ ε ă a ă z ` ε, ou encore x ă a ă y, ce qui
conclut.

Les ensembles Q et RzQ sont denses dans R.

Théorème - Densité de Q et RzQ dans R

Démonstration.

– Soit x P R. On fixe ε ą 0. On sait qu’il existe un entier q P N‹ tel que q ą 1
ε ,

et donc 1
q ă ε. En notant p “ txqu, on a alors

p ď xq ă p ` 1, donc p

q
ď x ă

p

q
`

1

q
, et p

q
ď x ă

p

q
` ε.

0 1
q

2
q

3
q

x

p
q

p`1
q

ε

On a alors 0 ď x ´
p
q ď ε, donc |x ´

p
q | ă ε. Par conséquent, on a montré que Q est dense dans R.

– Soit x P R. On fixe ε ą 0. On sait par le point précédent qu’il existe q P Q tel que |px ´
?
2q ´ q| ă ε, donc

|x ´ r| ă ε avec r “ q `
?
2. Or on a r P RzQ (sinon,

?
2 “ r ´ q P Q, et il y a contradiction). On a donc bien

montré que RzQ est dense dans R.

3. Densité de D dans R

L’ensemble des décimaux D “
␣

k
10n , k P Z, n P N

(

est dense dans R.

Théorème - Densité de D dans R

Démonstration. Soient x P R et ε ą 0. Soit n P N tel que 10n ą 1
ε (il suffit de choisir un entier n ą ´ ln ε

ln 10 ). Par
définition de la partie entière, on a t10nxu ď 10nx ă t10nxu ` 1. Ainsi, en posant k “ t10nxu, on a

k

10n
ď x ă

k

10n
`

1

10n
. (1)

Par conséquent, comme 1
10n ă ε, on a 0 ď x ´ k

10n ă ε. Comme y “ k
10n P D, on a bien trouvé un nombre y P D tel

que |x ´ y| ă ε, ce qui conclut.

Remarque. Pour tout n P N, l’encadrement (1) obtenu dans la démonstration ci-dessus fournit une approximation
décimale d’un réel x à une précision 10´n fixée :

– le décimal k
10n est une approximation de x dite par défaut,

– le décimal k
10n ` 1

10n est une approximation de x dite par excès.

III Droite achevée
On cherche à prolonger l’ensemble R de manière à assurer que toute partie du nouvel ensemble admette une borne
supérieure et une borne inférieure. Pour ce faire, on introduit deux nouveaux éléments `8 et ´8, et on prolonge la
relation d’ordre et les opérations sur R.

On appelle droite achevée l’ensemble R “ R Y t´8,`8u.

– On prolonge l’ordre ď à R en posant ´8 ď x et x ď `8 pour tout x P R.
– On prolonge l’addition en posant :

Définition - Droite achevée R
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`8 ` x “ x ` p`8q “ `8 et ´8 ` x “ x ` p´8q “ ´8 pour tout x P R,
`8 ` p`8q “ `8, et ´8 ` p´8q “ ´8.

– On prolonge la multiplication et l’inverse en posant : 1
`8

“ 1
´8

“ 0, et pour tout x P Rzt0u,

x ˆ p`8q “ p`8q ˆ x “

"

`8 si x ą 0,
´8 si x ă 0

x ˆ p´8q “ p´8q ˆ x “

"

´8 si x ą 0,
`8 si x ă 0

Les formes 0 ˆ p˘8q et p´8q ` p`8q sont indéterminées dans R.

On étend la définition de bornes supérieures et inférieures aux parties de R avec la même définition : si A Ă R, alors
supA (resp. inf A) est le plus petit majorant (resp. plus grand minorant) de A dans R, s’il existe.

On peut alors déduire du résultat dans R et des prolongements ci-dessus le résultat suivant.

Toute partie de R admet une borne supérieure et une borne inférieure dans R.
Si A admet une borne supérieure (resp. inférieure) dans R, alors sa borne supérieure (resp. inférieure) dans R
est la même.

Théorème - Bornes supérieures, inférieures dans R

Remarques.

– Si A est non majorée dans R, alors son seul majorant dans R est `8, donc supA “ `8 dans R. Ceci coïncide
avec la notation présentée plus haut. De même, si A n’est pas minorée dans R, alors inf A “ ´8.

– Comme l’ensemble des majorants de ∅ dans R est R entier, on a sup∅ “ ´8. De même, inf ∅ “ `8.

IV Intervalles de R, de R
On rappelle que les intervalles de R sont de l’une des formes suivantes :

˛ ra, bs avec a, b P R, ˛ ra, br avec a P R, b P R Y t`8u,
˛ sa, br, a, b P R, ˛ sa, bs avec a P R Y t´8u, b P R.

Plus généralement les intervalles de R sont de la forme ra, bs, ra, br, sa, bs ou sa, br, où a, b P R avec a ď b.

Si I est une partie de R, alors I est intervalle si et seulement si @x, y P I, rx, ys Ă I.

Théorème - Caractérisation des intervalles de R

Démonstration.

– Soit I est un intervalle de R. On traite le cas où I est de la forme I “ ra, bs avec a, b P R, les autres étant
similaires. Soient x, y P I avec x ď y. Si z P rx, ys, alors on a a ď x ď z ď y ď b, donc z P ra, bs “ I.

– Supposons que @x, y P I, rx, ys Ă I. Si I est majoré, on note b “ sup I, sinon, on pose b “ `8. Si I est minoré,
on note a “ inf I, sinon on pose a “ ´8. On suppose par exemple que a P I et b R I et on montre que I “ ra, br
(les autres cas sont similaires). On a clairement I Ă ra, br, et si x P ra, br, alors x ă b, donc il existe y P I tel que
y ą x. Comme a, y P I, ra, ys Ă I, donc x P I.

Remarques.

– La même caractérisation est valable pour les intervalles de R : I Ă R est intervalle de R si et seulement si
@x, y P I, rx, ys Ă I.

– On dit des ensembles A qui vérifient la propriété @x, y P A, rx, ys Ă A qu’ils sont convexes. La caractérisation
ci-dessus exprime que les intervalles de R sont les convexes de R.
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