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Chapitre 7

Applications et relations binaires

Dans tout le chapitre, E et F désignent deux ensembles.

I Applications
1. Généralités

‹ Une application f de E dans F (ou fonction de E dans F ) est un procédé qui à chaque élément x de E
associe un unique élément de F noté fpxq. On note alors

f : E Ñ F
x ÞÑ fpxq

‹ Si x P E, on appelle fpxq l’image de x par f . Si y “ fpxq, on dit que x est un antécédent de y par f .
‹ L’ensemble de toutes les applications de E dans F est noté F pE,F q ou FE .
‹ On appelle graphe de f l’ensemble

Γf “ tpx, yq P E ˆ F, y “ fpxqu.

Définition - Application, graphe

Remarques.

– Si f P F pE,F q, on dit que E est l’ensemble de départ de f , et F son ensemble d’arrivée.
– Vérifier que f P F pE,F q est bien définie consiste à vérifier que pour tout x P E, fpxq existe et appartient bien

à F .
– Deux applications f, g P F pE,F q sont égales (on note f “ g) si et seulement si pour tout x P E, fpxq “ gpxq.

Si f P F pE,F q, on appelle ensemble image, ou simplement image de f l’ensemble fpEq “ tfpxq, x P Eu.
L’ensemble fpEq est l’ensemble des valeurs de f .

Définition - Ensemble image

Remarque. Si B est une partie de F , on dit que f P F pE,F q est à valeurs dans B si toutes les images de f sont dans
B. Autrement dit, fpEq Ă B.

Applications particulières. Soit E un ensemble.

1. Application identité : on note IdE l’application IdE : E Ñ E
x ÞÑ x

.

2. Indicatrice d’une partie : soit A Ă E. On définit la fonction indicatrice de A par

1A : E Ñ t0, 1u

x ÞÑ

"

1 si x P A
0 si x R A

Exemple. Graphe de l’indicatrice 1r0,3s :

3

1

Remarque. Si A,B sont des parties de E, alors :

A Ă B ô 1A ď 1B 1AXB “ 1A1B , 1A “ 1 ´ 1A

A “ B ô 1A “ 1B 1AYB “ 1A ` 1B ´ 1A1B
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Soit A une partie de E.

– Soit f : E Ñ F une application. On dit appelle restriction à A de f : E Ñ F l’application f A : A Ñ F
définie par : @x P A, f Apxq “ fpxq.

– Soit f : A Ñ F une application. On dit que f̃ : E Ñ F est un prolongement de l’application f si pour tout
x P A, f̃pxq “ fpxq.

Définition - Restriction, prolongement

Exemple. Soit f est la fonction définie sur R par f : x ÞÑ x2. La restriction f R` est une fonction strictement
croissante.

Soient f : E Ñ F et g : F Ñ G deux applications. On définition la composition g ˝ f : E Ñ G par

g ˝ f : E Ñ G
x ÞÑ gpfpxqq

Définition - Composition

Remarques.

– Si f : E Ñ F est une application, on a IdF ˝f “ f et f ˝ IdE “ f .
– La composition est associative : si f : E Ñ F , g : F Ñ G et h : G Ñ G sont trois applications, alors
h ˝ pg ˝ fq “ ph ˝ gq ˝ f .

La composition n’est pas une opération commutative (même si les espaces de départ et d’arrivée peuvent parfois
être les mêmes).

2. Injection

Soit f : E Ñ F une application. On dit que f est injective ou est une injection de E sur F si tout élément de F
admet au plus un antécédent par f , c’est-à-dire si

@x, x1 P E, fpxq “ fpx1q ñ x “ x1.

Définition - Application injective

Remarques.

– On peut aussi définir l’injectivité en écrivant la contraposée de l’implication ci-dessus : f : E Ñ F est injective
si et seulement si

@x, x1 P E, x ‰ x1 ñ fpxq ‰ fpx1q.

– Pour montrer qu’une application f : E Ñ F n’est pas injective, on montre qu’il existe x, x1 dans E tels que
x ­“ x1 et fpxq “ fpx1q. Autrement dit, on montre que deux éléments distincts de E ont la même image.

– On peut retenir que f : E Ñ F est injective sur E si elle ne prend pas deux fois la même valeur sur E. En
d’autres termes, pour tout x P E, la connaissance de fpxq suffit pour retrouver x.

Exemples. – L’application f : R Ñ R
x ÞÑ x2

n’est pas injective : par exemple, on a fp1q “ fp´1q.

– En revanche, l’application g : R` Ñ R
x ÞÑ x2

est injective.

Exercice 1. Les applications suivantes sont-elles injectives ?

f : N Ñ N
n ÞÑ 2n

g : R2 Ñ R2

px, yq ÞÑ px ` y, x ´ yq

Soient f : E Ñ F et g : F Ñ G deux applications.

– Si f et g sont injectives, alors g ˝ f est injective.

Théorème - Composition et injectivité
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– Si g ˝ f est injective, alors f est injective.

Démonstration.

– Soient x, x1 P E tels que gpfpxqq “ gpfpx1qq. Par injectivité de g, on a alors fpxq “ fpx1q. Par injectivité de f ,
on a alors x “ x1. Ceci montre que g ˝ f : E Ñ G est injective.

– Soient x, x1 P E. Supposons que fpxq “ fpx1q, on a alors gpfpxqq “ gpfpx1qq, donc x “ x1 par injectivité de
g ˝ f .

Si E Ă R et f : E Ñ R est une fonction strictement monotone sur E, alors f est injective.
Théorème - Injectivité et stricte monotonie

Démonstration. On suppose par exemple f strictement croissante sur E (le cas strictement décroissant est similaire).
Soient x, x1 P E tels que x ­“ x1, et on suppose par exemple x ă x1. Alors fpxq ă fpx1q, ce qui est une contradiction
car fpxq “ fpx1q.

La réciproque est fausse. Une fonction réelle peut être injective sans être strictement
monotone. À titre d’exemple, la fonction dont le graphe est représenté ci-contre est
injective, mais pas monotone sur r0, 1s.
Nous verrons plus tard qu’en revanche si f est continue et injective sur un intervalle,
alors elle est strictement monotone.

1

1

3. Surjections

Soit f : E Ñ F . On dit que f est surjective ou est une surjection de E sur F si tout élément de F admet au
moins un antécédent dans E par f , c’est-à-dire

@y P F, Dx P E, fpxq “ y.

Autrement dit, f est surjective si l’ensemble image de f est F tout entier : fpEq “ F .

Définition - Application surjective

Exemple. L’application f : R Ñ R
x ÞÑ ex

n’est pas surjective, mais g : R Ñ R‹
`

x ÞÑ ex
l’est.

Remarques.

– Une application f : E Ñ F est surjective de E dans F si et seulement si pour tout y P F , l’équation fpxq “ y
d’inconnue x admet au moins une solution dans E.

– Une application qui a pour ensemble d’arrivée son ensemble image est toujours surjective. On retiendra :
f : E Ñ fpEq est toujours surjective.

– On a toujours fpEq Ă F . Par conséquent, il suffit de montrer F Ă fpEq pour montrer que f est surjective.

Exercice 2. Les applications suivantes sont-elles surjectives ?

f : N Ñ N
n ÞÑ 2n

g : R2 Ñ R2

px, yq ÞÑ px ` y, x ´ yq

Soient f : E Ñ F et g : F Ñ G deux applications.

– Si f et g sont surjectives, alors g ˝ f est surjective.
– Si g ˝ f est surjective, alors g est surjective.

Proposition - Composition et surjectivité

Démonstration.

– Soit z P G, montrons qu’il existe x P E tel que gpfpxqq “ z. Comme g est surjective, il existe y P F tel que
gpyq “ z. Comme f est surjective, il existe x P E tel que fpxq “ y. Finalement, on a bien gpfpxqq “ gpyq “ z.
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– Soit z P G, il existe x P E tel que gpfpxqq “ z par surjectivité de g ˝ f . Ainsi, fpxq est un antécédent de z par g,
donc g est surjective.

4. Bijections

Soit f : E Ñ F . On dit que f est bijective ou est une bijection si f est injective et surjective, autrement dit si
tout élément de F admet un unique antécédent dans E par f :

@y P F, D!x P E, fpxq “ y.

Définition - Application bijective

Remarque. Une application f : E Ñ F est bijective de E sur F si et seulement si pour tout y P F , l’équation fpxq “ y
d’inconnue x admet une unique solution dans E.

Une application f : E Ñ F est bijective si et seulement si f admet une réciproque, c’est-à-dire une fonction
g : F Ñ E telle que g ˝ f “ IdE et f ˝ g “ IdF .
Dans ce cas, la fonction g est unique et est appelée application réciproque de f , et notée f´1. On a par ailleurs
pour tous x P E et y P F ,

y “ fpxq ô x “ f´1pyq.

Théorème - Bijection et réciproque

Démonstration.

– Supposons f : E Ñ F est bijective. Pour y P F , on note gpyq l’unique antécédent de y par f , ce qui définit une
application g : F Ñ E. On a alors fpgpyqq “ y pour tout y P F , donc f ˝ g “ IdF .
Par ailleurs, si x P E, comme x est l’unique antécédent de fpxq par f , on a gpfpxqq “ x, et g ˝ f “ IdE .

– Supposons maintenant que g : F Ñ E vérifie g˝f “ IdE et f ˝g “ IdF . Comme g˝f est injective, f est injective,
et comme f ˝ g est surjective, f est surjective. On en déduit donc que f est bijective.

Remarque. Si f : E Ñ F est bijective, alors f´1 est donnée par : f´1 : F Ñ E
y ÞÑ l’élément x P E

tel que y “ fpxqExemples.

– L’application IdE est une bijection de E sur E, et Id´1
E “ IdE .

– Une application f : E Ñ E qui vérifie f ˝ f “ IdE , dite involutive, est bijective, et f´1 “ f .

Pour montrer que f : E Ñ F est bijective, on peut procéder des différentes manières suivantes :

– si on connaît la bijection réciproque g : F Ñ E : vérifier que g ˝ f “ IdE et f ˝ g “ IdF ,
– résoudre, pour y P F fixé, l’équation y “ fpxq, et en déduire f´1pyq,
– montrer séparément que f est injective, puis surjective (mais on n’obtient pas f´1).

Dans le cas où E,F P PpRq, on peut aussi recourir à la stricte monotonie pour montrer l’injectivité, ou même
au théorème de la bijection si f est continue et E est un intervalle de R (mais on n’obtient pas f´1).

Montrer la bijectivité

Exemple. Montrons que l’application f : R2 Ñ R2

px, yq ÞÑ px ` y, x ´ yq

est bijective.

Soit pu, vq P R2, on résout l’équation fpx, yq “ pu, vq, d’inconnue px, yq P R2 :

fpx, yq “ pu, vq ô

"

x ` y “ u
x ´ y “ v

ô

"

2x “ u ` v
2y “ u ´ v

ô pu, vq “

ˆ

u ` v

2
,
u ´ v

2

˙

looooooooomooooooooon

“f´1pu,vq

.

Ainsi, f est bijective de R2 sur R2, et on a f´1 : pu, vq ÞÑ
`

u`v
2 , u´v

2

˘

.
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Si f : E Ñ F est bijective, alors sa réciproque f´1 : F Ñ E est bijective et pf´1q
´1

“ f .

Théorème - Bijectivité de la réciproque

Démonstration. Ceci découle directement des égalités f ˝ f´1 “ IdF et f´1 ˝ f “ IdE .

Soient f : E Ñ F et g : F Ñ G deux applications bijectives. L’application g ˝ f : E Ñ G est bijective, et
pg ˝ fq

´1
“ f´1 ˝ g´1.

Théorème - Composition et bijectivité

Démonstration. On a pf´1 ˝ g´1q ˝ pg ˝ fq “ f´1 ˝ f “ IdE , et pg ˝ fq ˝ pf´1 ˝ g´1q “ g ˝ g´1 “ IdG.

5. Image directe, image réciproque

Soient f : E Ñ F une application et A P PpEq, B P PpF q.

– On appelle image directe de A le sous-ensemble de F constitué des images par f des éléments de A :

fpAq “ tfpxq, x P Au “ ty P F, Dx P A, fpxq “ yu.

– On appelle image réciproque de B le sous-ensemble de E constitué des antécédents par f des éléments de
B :

f´1pBq “ tx P E, fpxq P Bu.

Définition - Image directe, image réciproque

Remarque. Si B P PpF q et x P E, on a l’équivalence : x P f´1pBq ô fpxq P B.

On note f´1pBq même lorsque f n’est pas bijective : on retiendra qu’on a toujours le droit d’écrire f´1pBq.
Dans le cas où f est bijective, l’ensemble image réciproque f´1pBq coïncide avec l’image directe de B par l’appli-
cation f´1.

En effet, si f est bijective, l’image réciproque de B par f tx P E, fpxq P Bu se récrit tx P E, Dy P B, fpxq “ yu,
qui n’est autre que l’image directe de B par f´1.

Dans le cas où f n’est pas une bijection, f´1pBq n’a de sens qu’en tant qu’image réciproque.

Exemple. Si f : R Ñ R est définie par f : x ÞÑ x2, alors

fpr1,
?
2sq “ r1, 2s,

f´1pr1, 2sq “ r´
?
2,´1s Y r1,

?
2s.

On remarque en particulier que pour A “ r1,
?
2s, on a

f´1pfpAqq ­“ A. A

fpAq B

f´1pBq

II Relations binaires
1. Définition

Soit R une partie de E ˆE. Lorsque px, yq P R, on note xRy, et on dit que x est en relation avec y pour R. On
dit que R est une relation binaire sur E.

Définition - Relation binaire

Exemples. Voici quelques exemples de relations binaires.

– L’égalité sur un ensemble E : xRy ô x “ y.
– La relation ď sur R : xRy ô x ď y.
– L’inclusion sur PpEq : ARB ô A Ă B.
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– La relation de congruence modulo n P N sur Z : aRb ô Dk P Z, b “ a ` kn.
– La relation de congruence modulo α P R sur R : xRy ô Dk P Z, y “ x ` kα.
– La divisibilité dans N : aRb ô Dk P Z, b “ ka.

2. Relation d’équivalence

On dit qu’une relation binaire R sur E est une relation d’équivalence si R vérifie les propriétés suivantes :

– R est réflexive : @x P E, xRx.
– R est symétrique : @x, y P E, xRy ô yRx.
– R est transitive : @x, y, z P E, pxRy et yRzq ñ xRz.

Définition - Relation d’équivalence

Remarque. On note souvent les relations d’équivalences „, », ”.

Exemples.

– La relation d’égalité sur un ensemble E est une relation d’équivalence.
– La relation de congruence modulo n P N est une relation d’équivalence sur Z.
– La relation de congruence modulo α P R est une relation d’équivalence sur R.

Soit „ une classe d’équivalence sur E. On appelle classe d’équivalence d’un élément x P E l’ensemble des éléments
de E en relation avec x :

clpxq “ ty P E, x „ yu.

On note parfois x̄ au lieu de clpxq. On note E{„ l’ensemble des classes d’équivalence pour „.

Définition - Classes d’équivalence

Exemples.

1. On considère la relation „ sur R‹ définie par : x „ y ô x et y ont même signe. Il s’agit d’une relation
d’équivalence , et pour tout x P R‹,

clpxq “

"

R‹
` si x P R‹

`,
R‹

´ si x P R‹
´.

Ainsi, R‹{„ “ tR‹
´,R‹

`u, et on remarque que R‹ “ clp´1q \ clp1q.

2. On considère la relation R2 de congruence modulo 2 dans Z. Si a P Z, alors

clpaq “ tb P Z, a ” b r2su “ tb P Z, a et b ont même paritéu.

Ainsi, si a est pair, on a clpaq “ tb, b ” 0 r2su “ 2Z, et si a est impair, on a clpaq “ tb, b ” 1 r2su “ 2Z ` 1.
Finalement, Z{R2 “ t2Z, 2Z ` 1u.

Remarques.

– Soient „ une relation d’équivalence sur E et x, y P E. On a clpxq “ clpyq ô x „ y.
Si clpxq “ clpyq, alors x P clpxq “ clpyq, donc x „ y.
Si x „ y et z P clpxq, alors x „ z. Ainsi, y „ z, et z P clpyq. On a donc clpxq Ă clpyq. De même, clpyq Ă clpxq.

– Deux classes distinctes sont disjointes : si x, y P E vérifient x ȷ y, alors clpxq X clpyq “ ∅.
En effet, si on avait z P clpxq X clpyq, alors on aurait x „ z et z „ y, donc x „ y par transitivité.

Si „ est une relation d’équivalence sur E, on appelle ensemble de représentants pour la relation „ un ensemble
A qui contient un unique élément de chaque classe d’équivalence de „.

Définition - Ensemble de représentants

Remarque. D’après la remarque précédent, les différentes classes d’équivalence de „ forment une partition de E : si
A est un ensemble de représentants pour „, alors

E “
ğ

xPA

clpxq.
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Exemples.

1. Si „ est la relation sur R‹ donnée par : x „ y ô x et y ont même signe, alors t´1, 1u est un ensemble de
représentants pour „ : R‹ “ clp´1q \ clp1q et R‹{ „“ tclp´1q, clp1qu.

2. Si R2 est la relation de congruence modulo 2 dans Z, alors t0, 1u est un ensemble de représentants pour R2. On
a Z{R2 “ tclp0q, clp1qu.

3. Plus généralement, si Rn est la relation de congruence modulo n dans Z, alors t0, 1, . . . , n ´ 1u est un système
de représentants de pour Rn. On a alors Z{Rn “ tclp0q, . . . , clpn ´ 1qu.

3. Relation d’ordre

On dit qu’une relation binaire R sur E est une relation d’ordre si R vérifie les propriétés suivantes :

– R est réflexive : @x P E, xRx.
– R est antisymétrique : @x, y P E, pxRy et yRxq ñ x “ y.
– R est transitive : @x, y, z P E, pxRy et yRzq ñ xRz.

On dit alors que E muni de l’ordre R est un ensemble ordonné.

Définition - Relation d’ordre

Remarque. On note souvent les relations d’ordre ď, ĺ, ď.

On dit qu’une relation d’ordre ď sur E est totale si @x, y P E, x ď y ou y ď x. Sinon, on on dit qu’elle est
partielle.

Définition - Ordre total, ordre partiel

Exemples.

– La relation ď est une relation d’ordre sur R. Elle est totale.
– La relation Ă est une relation d’ordre sur PpRq. Elle est partielle : par exemple, on a t0u Ć t1u et t1u Ć t0u.
– La relation de divisibilité | est une relation d’ordre sur N (mais pas sur Z). Elle est partielle : par exemple, 2 ne

divise pas 3 et 3 ne divise pas 2, donc 2 et 3 ne sont pas comparables.

Soient ď une relation d’ordre sur E et A P PpEq.

– On dit que m P E est un majorant (resp. un minorant) de A si @x P A, x ď m (resp. @x P A, m ď x).
– On dit que m P E est un plus grand élément (resp. plus petit) élément de A si m est un majorant (resp.

un minorant) de A et m P A.

Définition - Majorant, minorant, plus petit élément, plus grand élément

Remarque. Si A P PpEq a un plus grand (resp. plus petit) élément, il est unique. On l’appelle alors le maximum de
A, noté maxA (resp. le minimum de A, noté minA).

Exemples.

– Pour la relation ď sur R, l’ensemble r0, 1r n’admet pas de maximum, mais il admet un minimum, qui est 0.

– Inclusion sur PpEq : ˛ PpEq admet ∅ pour plus petit élément pour l’inclusion : @A P PpEq, ∅ Ă A.
˛ PpEq admet E pour plus grand élément pour l’inclusion : @A P PpEq, A Ă E.

– Divisibilité sur N : ˛ N admet 1 pour plus petit élément pour la divisibilité : @n P N, 1 |n.
˛ N admet 0 pour plus grand élément pour la divisibilité : @n P N, n | 0.

Le résultat qui suit concerne N muni de l’ordre habituel ď, et repose sur les axiomes qui permettent la construction
de l’ensemble N (les axiomes de Peano si on suit sa construction de N). Cette construction est hors programme.

L’ensemble N muni de son ordre ď vérifie :

– Toute partie non vide de N possède un minimum.

Théorème - Parties de N et minimum/maximum
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– Toute partie non vide et majorée de N possède un maximum.

4. Équipotence

On dit que les ensembles E et F sont équipotents s’il existe une bijection de E sur F . On notera alors E – F .
Définition - Ensembles équipotents

Remarque. L’équipotence vérifie les propriétés d’une relation d’équivalence : si E,F,G sont des ensembles, alors on a

˛ E – E l’application IdE est bijective,
˛ E – F ñ F – E si f : E Ñ F est bijective, alors f´1 : F Ñ E est également bijective,
˛ pE – F et – Gq ñ E – G si f : E Ñ F et g : F Ñ G sont bijectives, alors g ˝ f : E Ñ G est bijective.

Exemples.

˛ 2N – N : l’application f : n ÞÑ 2n est une bijection de N sur 2N.
˛ N‹ – N : l’application f : n ÞÑ n ´ 1 est une bijection de N‹ sur N.
˛ R – s ´ 1, 1r : l’application th est une bijection de R sur s ´ 1, 1r.

On dit que E est dénombrable si E est équipotent à N, c’est-à-dire s’il existe une bijection de E sur N.
Définition - Dénombrabilité

Remarque. Dire qu’il existe une bijection de E sur N revient à dire qu’on peut associer chaque élément de E à un
nombre entier qui lui est propre, en utilisant tous les entiers. En d’autres termes, E est infini et on peut numéroter
tous ses éléments de E.

Exemples. – D’après ce qui précède, 2N, N‹ sont dénombrables.

– N2 est dénombrable.
On a vu (voir DM 1) que pour tout n P N‹, il existe un unique couple pp, qq P N2 tel que n “ 2pp2q ` 1q. En
d’autres termes, l’application

f : N2 Ñ N‹

pp, qq ÞÑ 2pp2q ` 1q

est bijective. Par conséquent, N2 – N‹. Comme N‹ – N, on a aussi N2 – N.

– Nk est dénombrable pour tout k P N‹.
Ceci peut se voir par récurrence à l’aide du résultat précédent (exercice !).

– Q est dénombrable.

– R n’est pas dénombrable.

Plus de détails seront donnés l’an prochain sur ces deux derniers exemples.
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