MPSI — Mathématiques 2025-26

Chapitre 7

Applications et relations binaires

Dans tout le chapitre, E et F' désignent deux ensembles.

| Applications

1. Généralités

Définition - Application, graphe
* Une application f de E dans F (ou fonction de E dans F') est un procédé qui & chaque élément x de E
associe un unique élément de F' noté f(z). On note alors
f : E - F
z = f(z)
* Siz € E, on appelle f(x) limage de x par f. Siy = f(x), on dit que = est un antécédent de y par f.
» L’ensemble de toutes les applications de E dans F est noté . (E, F) ou FE.
* On appelle graphe de f ’ensemble

Iy = {(z,y)e ExF, y= f(x)}.

Remarques.

- Si fe #(E,F), on dit que E est ’ensemble de départ de f, et F' son ensemble d’arrivée.

— Vérifier que f € F(E, F) est bien définie consiste a vérifier que pour tout x € E, f(z) existe et appartient bien
aF.

— Deux applications f,g € Z(FE, F) sont égales (on note f = g) si et seulement si pour tout x € E, f(x) = g(z).

Définition - Ensemble image

Si f € F(E,F), on appelle ensemble image, ou simplement image de f 'ensemble f(E) = {f(x), © € E}.
L’ensemble f(F) est ’ensemble des valeurs de f.

Remarque. Si B est une partie de F', on dit que f € & (E, F) est a valeurs dans B si toutes les images de f sont dans
B. Autrement dit, f(F) c B.

Applications particuliéres. Soit F un ensemble.

1. Application identité : on note Idg I'application Idg : E — FE .
x -
2. Indicatrice d’une partie : soit A < E. On définit la fonction indicatrice de A par

14 : E — {0,1}
1 sized
. 0 siz¢A
Exemple. Graphe de I'indicatrice 1o 3 : 11
3
Remarque. Si A, B sont des parties de F, alors :
Ac B & 14<1p Lo~ = 1415, Iz=1-14

A=B « 14=1p TaoB=1la+1g—141p
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Définition - Restriction, prolongement
Soit A une partie de E.
— Soit f: E — F une application. On dit appelle restriction ¢ A de f : E — F l'application f|4: A - F
définie par : Vz € A, f|4(x) = f(x).

— Soit f: A — F une application. On dit que f: E — F est un prolongement de I'application f si pour tout
ze A, f(z) = f(z).

Exemple. Soit f est la fonction définie sur R par f : x — x2. La restriction f |r, est une fonction strictement
croissante.

Définition - Composition
Soient f: E — F et g: F — G deux applications. On définition la composition go f : E — G par
gof: E — G
z — g(f(z))

Remarques.

— Si f: E — F est une application, on a Idpof = f et foldg = f.
— La composition est associative : si f : E — F, g : F — G et h : G — G sont trois applications, alors

ho(gof)=(hog)of.

/A La composition n’est pas une opération commutative (méme si les espaces de départ et d’arrivée peuvent parfois
étre les mémes).

2. Injection

Définition - Application injective
Soit f : E — F une application. On dit que f est injective ou est une injection de E sur F si tout élément de F’
admet au plus un antécédent par f, c’est-a-dire si

Vz,2' € B, f(z)=f(z') = z=1

Remarques.

— On peut aussi définir I'injectivité en écrivant la contraposée de 'implication ci-dessus : f : E — F' est injective
si et seulement si

Vo, ' € B, ©#x = f(x)# f(2').

— Pour montrer qu’une application f : E — F n’est pas injective, on montre qu’il existe x, 2’ dans E tels que
x=2a" et f(x) = f(a'). Autrement dit, on montre que deux éléments distincts de E ont la méme image.

— On peut retenir que f : E — F est injective sur F si elle ne prend pas deux fois la méme valeur sur E. En
d’autres termes, pour tout z € E, la connaissance de f(z) suffit pour retrouver z.

Exemples. — L’application f : R — R n’est pas injective : par exemple, on a f(1) = f(-1).
2
xT - T

— En revanche, 'application g : R, — R est injective.

xT — 1'2

Exercice 1. Les applications suivantes sont-elles injectives ?

f: N - N g: R > R?
n — 2n (x,y) — (37 + Y, T — y)

 Théoréme - Composition et injectivité
Soient f: E — F et g: F — G deux applications.

— Si f et g sont injectives, alors g o f est injective.
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— Si go f est injective, alors f est injective.

Démonstration.
— Soient z,z’ € E tels que g(f(z)) = g(f(2’)). Par injectivité de g, on a alors f(x) = f(2'). Par injectivité de f,
on a alors = 2. Ceci montre que go f : E — G est injective.

— Soient x,2’ € E. Supposons que f(z) = f(a'), on a alors g(f(x)) = g(f(2')), donc x = 2’ par injectivité de
gof. O

" Théoréme - Injectivité et stricte monotonie

Si EcRet f: E— R est une fonction strictement monotone sur E, alors f est injective.

Démonstration. On suppose par exemple f strictement croissante sur E (le cas strictement décroissant est similaire).
Soient z, 2’ € F tels que x = 2/, et on suppose par exemple = < z’. Alors f(x) < f(z'), ce qui est une contradiction

car f(z) = f(a'). O

/A La réciproque est fausse. Une fonction réelle peut étre injective sans étre strictement 1
monotone. A titre d’exemple, la fonction dont le graphe est représenté ci-contre est
injective, mais pas monotone sur [0, 1].

Nous verrons plus tard qu’en revanche si f est continue et injective sur un intervalle,
alors elle est strictement monotone.

3. Surjections

Définition - Application surjective
Soit f : E — F. On dit que f est surjective ou est une surjection de F sur F si tout élément de F' admet au
moins un antécédent dans E par f, c’est-a-dire

VyeF, Jx e E, f(x)=y.

Autrement dit, f est surjective si 'ensemble image de f est F' tout entier : f(F) = F.

Exemple. L’application f : R — R n’est pas surjective, mais g : R — R% Test.
x — € x — €*

Remarques.

— Une application f : E — F est surjective de E dans F' si et seulement si pour tout y € F, ’équation f(z) =y
d’inconnue z admet au moins une solution dans F.

— Une application qui a pour ensemble d’arrivée son ensemble image est toujours surjective. On retiendra :

f: E — f(F) est toujours surjective.

— On a toujours f(E) c F. Par conséquent, il suffit de montrer F' < f(FE) pour montrer que f est surjective.

Exercice 2. Les applications suivantes sont-elles surjectives 7

RQ
(z+y,z—y)

f: N - N g: R?
no— 2n (2,y)

—
—

" Proposition - Composition et surjectivité
Soient f: F — F et g: F — G deux applications.

— Si f et g sont surjectives, alors g o f est surjective.
— Si g o f est surjective, alors g est surjective.

Démonstration.

— Soit z € G, montrons qu'il existe x € F tel que g(f(x)) = z. Comme g est surjective, il existe y € F tel que
g(y) = z. Comme f est surjective, il existe x € E tel que f(z) = y. Finalement, on a bien g(f(x)) = g(y) = z.

Lycée Montesquieu 3



MPSI — Mathématiques 2025-26

— Soit z € G, il existe x € E tel que g(f(z)) = z par surjectivité de g o f. Ainsi, f(x) est un antécédent de z par g,
donc g est surjective. O

4. Bijections

Définition - Application bijective
Soit f : E — F. On dit que f est bijective ou est une bijection si f est injective et surjective, autrement dit si
tout élément de F' admet un unique antécédent dans E par f :

Vye F, Az e E, f(x) =y.

Remarque. Une application f : E — F est bijective de E sur F' si et seulement si pour tout y € F', I’équation f(z) =y
d’inconnue x admet une unique solution dans F.

" Théoréme - Bijection et réciproque
Une application f : E — F est bijective si et seulement si f admet une réciproque, c’est-a-dire une fonction
g:F— FEtelleque gof=Idg et fog=Idp.
Dans ce cas, la fonction g est unique et est appelée application réciproque de f, et notée f~1. On a par ailleurs
pour tous x € F et y e F, |
y=1r(2) < z=[1"(y).

Démonstration.
— Supposons f : E — F est bijective. Pour y € F, on note g(y) I'unique antécédent de y par f, ce qui définit une
application g : FF — E. On a alors f(g(y)) = y pour tout y € F, donc f og = Idp.
Par ailleurs, si « € E, comme x est 'unique antécédent de f(x) par f, on a g(f(z)) =z, et go f =1dg.
— Supposons maintenant que g : F' — E vérifie go f = Idg et fog = Idrp. Comme go f est injective, f est injective,

et comme f o g est surjective, f est surjective. On en déduit donc que f est bijective. O
Remarque. Si f: E — F est bijective, alors f~! est donnée par: f~': F — E
y +—  Délément zr e F
Exemples. tel que y = f(x)

— L’application Idg est une bijection de F sur F, et IdE1 = Idg.
— Une application f : E — E qui vérifie f o f = Idg, dite involutive, est bijective, et f~1 = f.

% Montrer la bijectivité

Pour montrer que f: E — F est bijective, on peut procéder des différentes maniéres suivantes :
— si on connait la bijection réciproque g : F' — E : vérifier que go f = Idg et fog = Idp,
— résoudre, pour y € F fixé, I'équation y = f(x), et en déduire f~1(y),
— montrer séparément que f est injective, puis surjective (mais on n’obtient pas f~1).

Dans le cas ou E, F € Z(R), on peut aussi recourir & la stricte monotonie pour montrer I'injectivité, ou méme
au théoréme de la bijection si f est continue et E est un intervalle de R (mais on n’obtient pas f=1).

Exemple. Montrons que I'application f: R? — R? est bijective.
(x,y) — (x+y7x—y)

Soit (u,v) € R?, on résout I'équation f(x,y) = (u,v), d’inconnue (x,y) € R? :

foy) = (o) < {x+y—u - {2x—u+v - (u7v)=(u+v7u—v).

rT—Yy=0 20=u—wv 2 2
[
Ainsi, f est bijective de R? sur R? et on a f~1 : (u,v) — ("T’L“, “gv) =f=*(u,v)
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" Théoréme - Bijectivité de la réciproque

| Si f: E — F est bijective, alors sa réciproque f~!: F — E est bijective et (]"_1)71 = i

Démonstration. Ceci découle directement des égalités fo f' =Idp et f~'o f = Idg. O

 Théoréme - Composition et bijectivité

Soient f : E — F et g : F — G deux applications bijectives. L’application g o f : E — G est bijective, et
(go )y~ =f"og".

Démonstration. On a (f~log Y o(gof) = f~lof = Idg,et (gof)o(ftog™t) =gogt = Idg. O

5. Image directe, image réciproque

Définition - Image directe, image réciproque
Soient f : E — F une application et A € Z(FE), Be P(F).

— On appelle image directe de A le sous-ensemble de F' constitué des images par f des éléments de A :
f(A) = {f(z), ze A} = {yeF, dxec A, f(z) =y}

— On appelle image réciproque de B le sous-ensemble de E constitué des antécédents par f des éléments de

B:
fH(B) = {z€ E, f(x)e B}.

Remarque. Si Be Z(F) et x € E, on a I’équivalence : z € f~1(B) < f(r)e B.

/A On note f~1(B) méme lorsque f n’est pas bijective : on retiendra qu’on a TOUJOURS LE DROIT d’écrire f~1(B).
Dans le cas otl f est bijective, 'ensemble image réciproque f~1(B) coincide avec I'image directe de B par I'appli-
cation f1.

En effet, si f est bijective, 'image réciproque de B par f {z € E, f(z) € B} serécrit {z € E, Jy € B, f(z) =y},
qui n’est autre que 'image directe de B par f~'.

Dans le cas oul f n’est pas une bijection, f~!(B) n’a de sens qu’en tant qu’'image réciproque.
Exemple. Si f:R — R est définie par f : x — 22, alors
F(ILV2D) = [1,2],
FH2) = [=v2, -1 o [1L,v2]

On remarque en particulier que pour A = [1,\/5], on a

FTHf(A) = A

Il  Relations binaires

1. Définition

Définition - Relation binaire

Soit # une partie de FE x E. Lorsque (z,y) € %, on note 2%y, et on dit que x est en relation avec y pour Z. On
dit que Z est une relation binaire sur E.

Exemples. Voici quelques exemples de relations binaires.

— L’égalité sur un ensemble F : 2%y < x =y.
— La relation < sur R: 2%y < x <y.
— L’inclusion sur #(F) : A#ZB < Ac B.
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— La relation de congruence modulon e Nsur Z : a#Zb < 3keZ, b=a+ kn.
— La relation de congruence modulo a e Rsur R: 2%y < ke Z, y=x + ka.
— La divisibilité dans N : aZb < ke Z, b= ka.

2. Relation d’équivalence

Définition - Relation d’équivalence
On dit qu’une relation binaire % sur E est une relation d’équivalence si Z vérifie les propriétés suivantes :
— X est réflexive : Vx e E, xZx.
— X est symétrique : Vx,ye E, t Ry < yZx.
— X est transitive : Vx,y,z € E, (xRy et y#z) = x%z.

Remarque. On note souvent les relations d’équivalences ~, ~, =.
Exemples.

— La relation d’égalité sur un ensemble E est une relation d’équivalence.
— La relation de congruence modulo n € N est une relation d’équivalence sur Z.
— La relation de congruence modulo « € R est une relation d’équivalence sur R.

Définition - Classes d’équivalence

Soit ~ une classe d’équivalence sur E. On appelle classe d’équivalence d’un élément x € E I'ensemble des éléments

de F en relation avec x :
c(z) = {yeE, z~y}

On note parfois Z au lieu de cl(x). On note E/~ P'ensemble des classes d’équivalence pour ~.

Exemples.

1. On considére la relation ~ sur R* définie par : = ~ y < =z et y ont méme signe. Il s’agit d’une relation
d’équivalence , et pour tout x € R*,

| RL sizelR%,
cl(z) = { R* sizeR".
Ainsi, R*/~ = {R*,R% }, et on remarque que R* = cl(—1) w cl(1).
2. On considere la relation %5 de congruence modulo 2 dans Z. Si a € Z, alors
clla) = {beZ, a=0b[2]} = {beZ, aetbont méme parité}.

Ainsi, si a est pair, on a cl(a) = {b, b = 0[2]} = 2Z, et si a est impair, on a cl(a) = {b, b = 1[2]} = 2Z + 1.
Finalement, Z/%> = {2Z, 27, + 1}.

Remarques.
— Soient ~ une relation d’équivalence sur F et z,y € E. On a cl(z) = cl(y) < = ~y.

Si cl(z) = cl(y), alors z € cl(z) = cl(y), donc = ~ y.

Six ~yetzecl(x),alors z ~ z. Ainsi, y ~ z, et z € cl(y). On a donc cl(z) < cl(y). De méme, cl(y) < cl(z).
— Deux classes distinctes sont disjointes : si z,y € E vérifient x + y, alors cl(z) n cl(y) = @.

En effet, si on avait z € cl(z) n cl(y), alors on aurait x ~ z et z ~ y, donc & ~ y par transitivité.

Définition - Ensemble de représentants

Si ~ est une relation d’équivalence sur F, on appelle ensemble de représentants pour la relation ~ un ensemble
A qui contient un unique élément de chaque classe d’équivalence de ~.

Remarque. D’apres la remarque précédent, les différentes classes d’équivalence de ~ forment une partition de E : si
A est un ensemble de représentants pour ~, alors

E=||c(x)

zeA
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Exemples.
1. Si ~ est la relation sur R* donnée par : = ~ y < x et y ont méme signe, alors {—1,1} est un ensemble de
représentants pour ~ : R* = cl(—1) ucl(l) et R*/ ~= {cl(—1),cl(1)}.
2. Si %5 est la relation de congruence modulo 2 dans Z, alors {0, 1} est un ensemble de représentants pour #5. On
a Z/%> = {cl(0),cl(1)}.
3. Plus généralement, si %, est la relation de congruence modulo n dans Z, alors {0,1,...,n — 1} est un systéme
de représentants de pour %,. On a alors Z/%,, = {cl(0),...,cl(n — 1)}.

3. Relation d’ordre

Définition - Relation d’ordre

On dit qu’'une relation binaire Z sur E est une relation d’ordre si &% vérifie les propriétés suivantes :
— X est réflexive : Yr € E, xZx.
— X est antisymétrique : Vx,y € E, (xRy et yZx) = x = y.
— X est transitive : Vx,y,z € E, (xRy et y#z) = x%z.

On dit alors que E muni de l'ordre & est un ensemble ordonné.

Remarque. On note souvent les relations d’ordre <, <, <.

—

Définition - Ordre total, ordre partiel

On dit qu’'une relation d’ordre < sur E est totale si Vx,y € £, © < y ouy < z. Sinon, on on dit qu’elle est
partielle.

Exemples.

— La relation < est une relation d’ordre sur R. Elle est totale.
— La relation < est une relation d’ordre sur Z(R). Elle est partielle : par exemple, on a {0} ¢ {1} et {1} ¢ {0}.

— La relation de divisibilité | est une relation d’ordre sur N (mais pas sur Z). Elle est partielle : par exemple, 2 ne
divise pas 3 et 3 ne divise pas 2, donc 2 et 3 ne sont pas comparables.

Définition - Majorant, minorant, plus petit élément, plus grand élément
Soient < une relation d’ordre sur E et A € Z(E).

— On dit que m € E est un majorant (resp. un minorant) de A si Ve e A, x <m (resp. Yz e A, m < z).

— On dit que m € E est un plus grand élément (resp. plus petit) élément de A si m est un majorant (resp.
un minorant) de A et m e A.

Remarque. Si A€ Z(FE) a un plus grand (resp. plus petit) élément, il est unique. On lappelle alors le maximum de
A, noté max A (resp. le minimum de A, noté min A).

Exemples.
— Pour la relation < sur R, Pensemble [0, 1[ n’admet pas de maximum, mais il admet un minimum, qui est 0.
— Inclusion sur Z(E) : o P(F) admet @ pour plus petit élément pour Uinclusion : VA e P (F), @ c A.
o P(E) admet FE pour plus grand élément pour 'inclusion : YA e #(E), Ac E.
— Divisibilité sur N: ¢ N admet 1 pour plus petit élément pour la divisibilité : Vne N, 1|n.
o N admet 0 pour plus grand élément pour la divisibilité : Vn e N, n|0.

Le résultat qui suit concerne N muni de 'ordre habituel <, et repose sur les axiomes qui permettent la construction
de l'ensemble N (les axiomes de Peano si on suit sa construction de N). Cette construction est hors programme.

Théoreme - Parties de N et minimum/maximum
L’ensemble N muni de son ordre < vérifie :

— Toute partie non vide de N possede un minimum.
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— Toute partie non vide et majorée de N possede un maximum.

4. Equipotence

Définition - Ensembles équipotents
I On dit que les ensembles E et F' sont équipotents s’il existe une bijection de E sur F'. On notera alors E >~ F.

Remarque. L’équipotence vérifie les propriétés d’une relation d’équivalence : si E, F, G sont des ensembles, alors on a

o E~F Uapplication 1dg est bijective,

o FExF=F>~F si f: E — F est bijective, alors f~' : F — E est également bijective,

o (FxFet xG)=Ex=G sif:E— Fetg:F — G sont bijectives, alors go f : E — G est bijective.
Exemples.

o 2N = N : lapplication f : n — 2n est une bijection de N sur 2N.
o N* = N : l'application f : n+— n — 1 est une bijection de N* sur N.
o R =] —1,1[ : Papplication th est une bijection de R sur | — 1, 1][.

Définition - Dénombrabilité
I On dit que F est dénombrable si E est équipotent a N, c’est-a-dire s’il existe une bijection de F sur N.

Remarque. Dire qu’il existe une bijection de E sur N revient a dire qu’on peut associer chaque élément de E a un
nombre entier qui lui est propre, en utilisant tous les entiers. En d’autres termes, E est infini et on peut numéroter
tous ses éléments de F.

Exemples. — D’apres ce qui précede, 2N, N* sont dénombrables.
— N2 est dénombrable.

On a vu (voir DM 1) que pour tout n € N*, il existe un unique couple (p,q) € N? tel que n = 2P(2¢ + 1). En

d’autres termes, I’application
[ N > N*
(pg) — 2°(2¢+1)

est bijective. Par conséquent, N> =~ N*. Comme N* ~ N, on a aussi N? ~ N.
— NF est dénombrable pour tout k € N*.

Ceci peut se voir par récurrence a l'aide du résultat précédent (exercice!).
— @ est dénombrable.
— R n’est pas dénombrable.

Plus de détails seront donnés ’an prochain sur ces deux derniers exemples.

Lycée Montesquieu 8



	Applications
	Généralités
	Injection
	Surjections
	Bijections
	Image directe, image réciproque

	Relations binaires
	Définition
	Relation d'équivalence
	Relation d'ordre
	Équipotence


