MPSI — Mathématiques 2025-26

Chapitre 6

Nombres complexes

| L’ensemble des nombres complexes
1. Définition

On admet ici I'existence de C, dont on détaille les opérations ci-dessous.

Définition-théoreme - Corps des nombres complexes

11 existe un ensemble noté C qui contient R, muni de deux opérations + (addition) et x (multiplication) vérifiant
les propriétés suivantes :

— C contient un élément i tel que i = —1,
— tout élément z de C s’écrit de maniere unique sous la forme z = z + iy, ou z,y € R,

— la somme et le produit de deux réels dans C coincident avec la somme et le produit dans R, et I’addition
et la multiplication dans C ont les mémes regles de calculs que dans R.

Les éléments de C sont appelés nombres complezes. Par ailleurs, si z = x +iy € C, on dit que x est la partie réelle
de z, et on note x = Re(z), et y est la partie imaginaire de z, et on note y = Jm(z). On appelle forme algébrique
de z lécriture z = = + iy.

Si z € C est tel que Re(z) =0, on dit que z est imaginaire pur, et on note z € iR.

Remarque. L’égalité x + iy = 2’ + iy’ entre deux nombres complexes se traduit par deux égalités de nombres réels :
r=1xety=1q".

Les regles de calculs de I'addition et la multiplication dans C donnent alors les relations suivantes.

Théoréme - Opérations et parties réelles, imaginaires
Siz, 2 e€C,

Re(z + 2') = Re(z)
Jm(z +2') = Jm(z)

Remarques.

— Si z € C, alors z admet un inverse pour laloi +: —z = —z +i(—y). Eneffet, 2+ (—2) = (z—z)+i(y—y) = 0.

o * : ! P Y e V1 1 _ (e—iy)(etiy) _ 2?+y® _
Si z € C*, alors z admet un inverse pour la loi x : s T T En effet, z x . = ey T = 1.

— On en déduit que C est intégre : si 2,2’ € C et 2z’ =0, alors z = 0 ou 2’ = 0. En effet, si z = 0, alors %zz’ =0,
donc 2z’ = 0.

Représentation graphique

On a pour habitude de représenter les nombres complexes dans un plan : on associe tout nombre complexe z au point
M de coordonnées (Re(z),Im(z)) dans un plan & muni d’un repére orthonormal direct (O,7, 7). On dit alors que M
est 'image de z, et que z est I’affixe du point M.

On associe aussi habituellement un nombre complexe z au vecteur % de coordonnées (SRe(z), Jm(z)) dans le plan Z.
On dira encore que z est I'affize du vecteur u.

Remarques. Dans un plan & muni d’un repére orthonormal direct (O,7,7),

— si M est un point de &2, alors l'affixe de M est celle du vecteur OM ,
— si A et B sont des points de & d’affixes respectives z4 et zg, alors affixe du vecteur AB est zp — z4,

— les réels ont pour image les points de I'axe (O, %) appelé axe des réels, et les complexes imaginaires purs ont pour
image les points de I'axe (O, ) appelé axe des imaginaires.
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2. Conjugué, module

Définition - Conjugué d’'un nombre complexe
| Si z € C, on appelle conjugué de z le nombre complexe zZ = Re(z) — iTm(z).

Remarques. Si z € C,

— Re(2) = Re(z), et Im(Z) = — Im(z),
— le point d’affixe Z est le symétrique du point d’affixe z par rapport a ’axe des réels.

" Théoréme - Propriétés du conjugué

Siz,z' eC,

Démonstration. Exercice. O
Exemple. SizeC,alors 1 +iz = 1+iz = 1 —iz.
Définition - Module d’un nombre complexe
| Si z € C, on appelle module de z le téel |z| = 1/PRe(2)? + Tm(z)2.

Remarques.

— Si z € R, alors le module de z coincide avec sa valeur absolue.

— Pour tout z € C, on a |Re(z)| < |z]| et |Tm(z)| < |z].

— Dans le plan complexe, |z| représente la distance entre le point d’affixe 0 et le point d’affixe z.
" Théoréme - Propriétés du module

Siz,z' eC,
2Z = |2|%, 1Z| = |2, 2] =0 & z=0, |22/ = |2||#'], et si 2/ =0, 2l = m
& |2’]

Démonstration. On note z = x + iy avec x,y € R.

~ Onazz=(z+iy)(z —iy) = 2% — (iy)? = 22 + y* = |2]%.

~ Onalz] = /22 + (-y)2 = /22 +y2 = |2

~Onalzl=0 < 22+1?=0 < 22=9>=0 « v=0ety=0 < 2=0.

- |z2/| = Vez'zd =V2z27 = V0Z12 12)7? = 12| |Z]-

— Siz=0,alors |1| x [2| = |z x 1| = |1] = 1, donc |1| = ﬁ Ainsi, si 2/ = 0, alors |Z| = |2 x | %] = % O
Remarque. On retiendra que 1’égalité 2z = |z|? permet d’écrire I'inverse de z € C* sous la forme % = ﬁ
Exemples.

— Mise sous forme algébrique de z = i ronaz= % = 31—J6i = 13—0 +i%.

— Siz,2' €C,alors |2 + 2|2 = |2]? + 2Re(22’) + |2/|%. En effet :

lz4+212 = (z42)z+7) = (z+2)E+72) = 22422 + 22 + 27 = |2 422 + 22 + |2
= |z|* + 2Re(22) + |2
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Théoreme - Inégalité triangulaire

Si z, 2’ € C, alors , ,
|2+ 2| < |2+ 1],

et il y a égalité si et seulement il existe A € Ry tel que 2 = Az’ ou 2’ = Az. On dit alors que z et 2’ sont
positivement liés.
Inégalité triangulaire généralisée. Plus généralement, si z, 2’ € C,

2l = 12'l] < |2+ 2| < |2| + ||

Démonstration. On a vu que |z + 2/|> = |22 + 2%Re(22') + |2/|%. Or on a Re(22') < |Re(22')] < |22/| = |2||2']. Ainsi,
|2+ 217 < |2+ 2120 || + |22 = (2] + |2'])
Ainsi, en composant par la fonction racine qui est croissante sur R, , on obtient 'inégalité triangulaire.
Cas d’égalité.
— Supposons qu’il y a égalité. D’aprés ce qui précede, on a done Re(22') = | Re(22’)| = |22/|. Ainsi,

— comme Re(z2') = | Re(22)], on a Re(22/) € R,
— comme Re(22")? = [22/|? = Re(22/)? + Tm(22)%, on a Jm(z2') = 0, donc 22’ € R.

Par conséquent, 22’ = Re(z2') € Ry, et on note a = 2z’ € R, . En multipliant par 2’, on obtient az’ = |2/|?z. Si
Zz' =0, alors z = Az’ avec A = ‘z% eR,. Si 2z =0, il est clair que z et 2z’ sont positivement liés.

— Réciproquement, si z et z’ sont positivement liés, alors il y a clairement égalité dans 'inégalité.

Inégalité triangulaire généralisée. Comme dans le cas réel, il suffit d’appliquer I'inégalité triangulaire de la maniere
suivante :

2| = |z +2 =2 < |z+2|+]| =7 = |2+ 7|+ ]7]
Ainsi, |z| — 2] < |z + 2/|. L'inégalité |2’| — |z| < |z + #/| se démontre de la méme fagon. O
Remarques.
— Comme dans le cas de R, on peut en fait synthétiser les inégalités triangulaires par :

l2l = 12l| < [z %2 < l2] + 2.

— Géométriquement, la condition z et 2z’ positivement liés exprime que les vecteurs du plan d’affixes z et 2’ sont
colinéaires dans le méme sens.

3. Equations du second degré dans C

Définition - Racines carrées complexes

| On appelle racine carrée complere d’un nombre complexe z tout nombre complexe w tel que w? = z.

Exemple. Les nombres complexes i et —i sont racines carrées complexes de —1.

/\ Contrairement & la racine carrée d’un nombre réel positif, il n’y a pas unicité de la racine carrée d’un nombre
complexe. La notation 1/x est donc interdite si on n’a pas x € R.

% Recherche des racines carrées complexes

Pour trouver les racines carrées complexes d’un nombre complexe z de forme algébrique a + ib, on cherche les
complexes w = x + iy avec z,y € R tels que w? = z, c’est-a-dire 22 — y? + 2izy = a + ib.

2

L’idée est d’ajouter la condition |w|? = 22, qui est clairement vérifiée lorsque w? = z, au systéme obtenu. On a :

w? =z o= = @
W=7 o {|w|2=|z| = 2zy = b
22 4+ 9% = Va2 + b2

Ce dernier systéme permet d’obtenir facilement x2 et y2. La relation 2zy = b donne par ailleurs le signe de = en
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fonction de celui de y, ce qui permet de trouver les couples (z,y) qui conviennent.

Remarque. Comme nous le verrons plus loin, si z € C*, on obtient toujours exactement deux racines complexes de z,
qui sont opposées.

Exemple. Déterminons les racines carrées complexes de z = 3 — 4i.

Ona |z| =5, donc siw =z +iy avec z,y € R, on a :

9 2?2 —y? =3 2 =4
9 w” =z 2
w:=z < {|w|2=z| < 2zy = —4 = ye =1
> +y? =5 zy = —2
La condition xy = —2 assure que a et b sont de signes opposés. On trouve donc que les deux racines de z

sont 2 —1et —2 +1.

Théoreme - Equations du second degré

Soient a,b,ce C avec a = 0 et A = b? — 4ac. Si § est une racine carrée complexe de A, alors
Y . 2 . , —-b—9¢ —b+4
— I’équation az® + bz + ¢ = 0 a pour solutions (éventuellement confondues) z; = 5 et zo = 9
a a
— pour tout 2 € C, az? +bz+c = a(z —21)(z — 22),
- onazl+22=f§,et 2120 = 7.
Démonstration. On note P(z) = az? + bz + ¢ pour tout z € C. Nous allons mettre I'expression de @ sous la forme
canonique :
P(z)

I L 2—ﬁ+5— ey 2 A v (LY
a a a 2a 4a2  a 2a 4a? 2a 2a

P ] b 5
Ainsi, (2) = (2 +—+ ) (z +— - ) = (2 — 21) (# — #2), et Péquation a pour seules solutions z; et zs.
a a

Par ailleurs, pour tout z € C, on a P(z) = a(z — 21)(2 — 22) = az? —a(z1 + 22)2 + az129. Ainsi,

— on a P(0) = az; 29, et comme on a aussi P(0) = ¢, on en déduit que az122 = ¢,
—onaP(l) = a—a(z1 + 22) + az122 = a —a(z1 + 22) + ¢, et comme on a aussi P(1) = a + b+ ¢, on en déduit
que b= —a(z1 + 22). O

Exemple. Résolvons 'équation 222 — (1 + 5i)z — 2(1 —1i) = 0.

Le discriminant de I’équation vaut (1 + 5i)2 + 16(1 — i) = —8 — 6i, qui a pour racines complexes 1 — 3i et
—1 + 3i. Les solutions sont donc données par :

1451+ (1 — 3i)

141
"est-a-di —— et 21
1 , Clest-a-dire 5 e 2

“ Théoréme - Systéme somme-produit

Soient u,v € C. Si 21,29 € C, alors on a :

{ z1+ 29 =u z1 et zo sont les solutions (éventuellement confondues)
<
2

Z122 =V de I’équation 2z —uz +v =10

Démonstration. On sait que z1 et z2 sont solutions de 1'équation (2 — 21)(z — 22) = 0, d.e. 2% — (21 + 22)2 + 2122 = 0.
Siz + 29 = w et 2129 = v, alors cette équation se récrit 22 —uz + v = 0.

Le sens réciproque a été démontré dans le théoréeme précédent. O

Remarque. Une conséquence est que pour tous nombres complexes u, v, il existe un couple de nombres complexes
dont la somme est u et le produit v.
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4. Fonctions polynomiales complexes

Définition - Fonction polynomiale, racine
On dit qu'une fonction P : C — C est polynomiale s’il existe n € N et aq, ..., a, € C tels que

VzeC, P(z)=anz"+...+ a1z + ao.

On dit que a € C est une racine de la fonction polynomiale P si P(a) = 0.

Le résultat suivant relie la factorisation d’une fonction polynomiale complexe et ses racines. Il sera démontré dans le
chapitre POLYNOMES.

Théoréme - Fonction polynomiale et racines

Soit P : C — C une fonction polynomiale. Si a est une racine de P, alors il existe une fonction polynomiale

Q : C — C telle que VzeC, P(z) = (z —a)Q(z).

Il Exponentielle complexe

1. Nombres complexes de module 1

Notation - Ensemble U, exponentielle d’un imaginaire pur
— On note U I’ensemble nombres complexes de module 1.

— Pour tout € R, on note L
e” = cosT +1sinzx.

Exemples. %™ =¢0 =1, ¢

Remarques.

— Les points d’affixe z € U ne sont autres que les points du cercle trigonométrique. Plus précisément, le point M
d’affixe €'* est le point du cercle trigonométrique tel que (v',OM ) = z [27].
2 = cos?x +sin?z = 1, donc €'* € U.

2 R R
2] ||

— Pour tout x € R, |e

— Si z € C*, alors é € U. En effet,

Le résultat suivant repose directement sur la définition des fonctions circulaires cos et sin.

" Théoréme - Paramétrisation de U
Soit z € U, il existe A € R tel que z = €. Par ailleurs, pour tous z,y € R,
iz

e? =e¥ o x=y[27]

Par conséquent, le réel 6 tel que z = €'? est unique & 27 pres.

Exemple. On a e'® = 1 si et seulement si z = 0 [27].

Théoréme - Propriétés de I'’exponentielle d’'un imaginaire pur
i. Pour tous z,y € R, on a el(®™¥) = el®el¥, et ev = e7® = L.
cos(nx) = Re ((cosx +isinx)™)

#i. Formule de Moivre. Si z € R et n € Z, alors e™* = (e®)", i.e. . N
sin(nxz) = Jm((cosz + isinz)™)

115. Formule d’Euler. Si z € R, alors

el® 4 e—iz ) elt _ g—ix
CoOSr = ———, sihy = ——

2
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Démonstration.

i. — Onae®e? = (cosx +isinz)(cosy +isiny) = (coszcosy —sinzsiny) + i(cosxsiny + sinz cosy). Les
formules d’addition permettent de conclure.

— Onae® = cosz —isinz = cos(—z) +isin(—z) = e . Par ailleurs,

1 cosr —isinx cosx —isinx .
- = — — = —5— = cosT —isinx = e
el® (cosz +isinz) (cosx — isinx) cos? x + sin” z

—izx

.. i n i N . s s s . T
ii. Il suffit de remarquer qu’on a (e')" = e™* d’apreés le point précédent par récurrence immédiate.

. eiz + 617 eiz + efi:v ] . eiz o e? ei:r o efi:r:
iii. On a cosz = Re(e®) = 5 = 3 , et sinz = Jm(e”) = 5 = 5 . O
i i

2. Forme trigonométrique

Définition-théoréeme - Argument, forme trigonométrique

Si z € C*, il existe un unique réel r > 0 et un réel # unique a 27 pres tels que z = re'?.
— Un tel réel 0 est appelé un argument de z.

-~ Onar = |z

On dit alors que z est écrit sous forme trigonométrique, ou exponentielle.

On appelle argument principal de z son unique argument dans | — 7, 7], on le note arg z.

Démonstration. Ezistence : comme é € U, il existe 0 € R tel que ﬁ = el donc z = |z]e.
Unicité : si z = rel? avec r > 0, alors |z| = |r| = r. Par ailleurs, on a alors ﬁ = ¢, et on sait que @ est unique &
2m-pres. O

Exemples. — Forme trigonométrique de z = 1 +iy/3 : ona z = 2 (% + 1@) = 2¢!5. Ainsi, arg z = 5
—On a —2 = 2¢'™, donc arg(—2) = 7.
~ On a 3i = 3¢'2, donc arg(3i) = 5.
2| = [2]
Remarques. — Pour tous 2,2’ e C*,ona z=72 < - ,
arg z = arg 2’ [27]
-SizeC*alors: ¢ zeR < argz=0 [n],

o z€iR & argz= 7 [n].

% Déterminer la forme trigonométrique d’'un complexe

Pour déterminer la forme trigonométrique d’un nombre complexe, on pourra commencer par mettre en facteur
son module, puis rechercher son argument.

Exemple. Déterminons la forme trigonométrique de z = v/6 — iv/2.

On a |z| = 2¢/2, et z se récrit z = 24/2 (@ — %1) = 24/2e71%.

Remarque. On ne reconnait pas toujours la forme trigonométrique d’'un nombre complexe de module 1 dans la
démarche ci-dessus. On peut néanmoins toujours exprimer l'argument en ayant recours a la fonction arctan. Le
résultat ci-dessous permet d’y parvenir.

' Théoréme

Soit z un complexe de forme algébrique z = a + ib avec a = 0, et de forme trigonométrique z = re'?. On a :

b
tanf = —.
a
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Remarques.

— Avec les notations du résultats ci-dessus, si a > 0 : on a 6 €] — 7, %[, donc § = arctan@. Sinon, on utilise la
relation tan(f + 7) = 2 ou tan(f — 7) = 2 pour déterminer 6.

a
— De maniére similaire, on peut exprimer # en ayant recours a la fonction arccos ou arcsin.

Exemple. Cherchons I'argument principal 6 de z = —2 +i.
On atanf = —%. D’autre part, on sait que  €]7, [, donc § — 7 €] — 7, 0[. Ainsi, comme tan( — ) = —%,
onaf—m= arctan(f %), et 0 = wfarctan%.
" Théoréme - Propriétés des arguments
Soient z,z' € C*. On a
i. arg(z7') = argz + arg 2’ [27]. iii. arg(z) = —argz [27].
ii. arg 5 = argz —argz’ [2m]. iv. arg(—z) = w+ arg z [27].
Démonstration.
i. Ona zz/ = |z|el@ez|y/|elares’ — |;p/|ellars=tares) donc arg(z2/) = argz + arg 2’ [27].
i. Ona 5 = ‘LZ/IZ% =% ellarsz—arg ') " qone arg 5 = argz —arg?’ [27].
iii. On a z = |z|el*e? = |z|e”1¥8% donc arg(z) = —argz [27].
. Ona —z = e™|z|el282 = |z]el("+2182) donc arg(—2z) = w + arg z [27]. O
Interprétation géométrique.
~ Si M est le point du plan d’affixe z = re'? avec r > 0, alors OM = r et (v,OM ) = 0 [27].
— Si @ et U sont d’affixes respectives z = e et 2/ = el avec r,7’ € R*., alors (@, 7) = 6’ — [27]. Autrement

dit,

!
(U,v) = argz —argz [27] = arg — [27].
z

— Si A, B, C sont trois points distincts du plan, d’affixes respectives z4, zg, z¢, alors

(AB,AC) = arg(zp — z4) — arg(zc — za) [27] argM [27].
ZC — Z2A

Ainsi, pour connaitre I'angle (:4_5 , AC ), on peut se ramener & une recherche d’argument de % On déduit alors
le résultat suivant.

Théoreme

Soient A, B, C sont trois points distincts du plan, d’affixes respectives z4, 25, z¢.

zZBp — 2
— Les points A, B, C sont alignés si et seulement si BT A R,
2C — ZA
=— — . . B — A _.
— Les vecteurs AB et AC sont orthogonaux si et seulement si ——— € iR.
ZC — ZA

., . ZB T RA
Démonstration. On note w = ———.
2C T ZA

— Les points A, B, C sont alignés si et seulement si les vecteurs sont colinéaires, c¢’est-a-dire (;4_5 ,:4_5 ) =0 [~x].
D’apres ce qui précede, ceci se récrit argw = 0 [27], c’est-a-dire w € R.

— Les vecteurs AB et AC sont orthogonaux si et seulement si (AB, AC ) = 5 [n], c’est-a-dire argw = 7 [7], ou
encore w € iR. O
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3. Techniques de calcul

a. Linéarisation

Il arrive qu’on souhaite transformer une expression faisant apparaitre des puissances de cosz et sinx en une
combinaison linéaire de termes de la forme cos(kx) ou sin(kz). On dit qu’on linéarise expression.

Linéarisation. Dans la pratique, on utilise la formule d’Euler, puis celle du binéme de Newton. On regroupe
les termes et on utilise a nouveau la formule d’Euler pour conclure.

Exemple. Linéarisons (cosx)3 :

3 eia: + efi:r 3 e3iz + 3eiz + 3efiz + 673im 1 eSiz + ef3iz eiz + efiz
cos™ T = =] = = +3
2 8 4 2 2

donc cos®z = 1 (cos(3z) + 3cosz), & nouveau par la formule d’Euler.

Remarque. Ceci permet de trouver une primitive de la fonction f : x — cos®z : on peut choisir la fonction

3 1 ( sin(3z) .
F:ize g (T +351nx>.
Plus généralement, cette technique permet de trouver une primitive de toute fonction de la forme z +— cos? x sin? x,

oup,q € N.

b. Délinéarisation

Il arrive qu’on ait besoin de faire I'opération inverse : écrire une expression faisant intervenir des termes de la
forme cos(pz) ou sin(gx) en fonction de puissances de cosz et de sin z.

Linéarisation. Dans la pratique, on utilise la formule de Moivre, puis celle bindme.
Exemple. Délinéarisons sin(3z) : on a sin(3z) = Jm(e®?) = Jm ((eix)?’) = Jm ((cosz + isinz)?). Or

cos® z + 3icos? zsinz — 3cosxsin? z — isin® z

(cosz + isinx)?

(cos® . — 3cosasin®z) + i(3cos? zsinx — sin® ).

2 2

g xr=1—cos”x.

z, ou sin(3x) = sinz (4cos? x — 1), du fait que sin
3

donc sin(3z) = 3 cos? xsinx — sin

On a par ailleurs aussi trouvé que cos(3z) = cos® x — 3 cos zsin® z.

c. Angle moitié

Il est trés souvent utile de savoir écrire sous forme trigonométrique une expression de la forme e'* +¢e'¥, ou encore
e'” —e'Y. Pour ce faire, on a recours a la technique dite de [’angle moitié.

x

- . .y . . i H H H H Y
Factorisation par I'angle moitié. On factorise ’expression e'* + e'¥ ou €' + e'¥ par ' 2 , de telle sorte
qu’on obtient

q i &ty Sl ] _jr—y r—1Y ;zty
e’ +e¥ = ¢ 2 (e’2 +e12) = 2 cos 5 ez,
: : Tty sr—y _sx—y .. XY sty
e —e¥ = 72 (e’2 —e‘?) = 2isin 5 ez .

Remarques.

— Notons qu’on n’obtient pas toujours la forme trigonométrique directement, mais il est aisé de ’en déduire.
— Tres souvent, on utilise ce procédé pour simplifier des expressions de la forme e'* + 1 ou €' — 1, on est alors
s\ . 1z
amené a factoriser par e'z.

L’exemple suivant faire partie des résultats qu’il faut absolument savoir retrouver, et dont les techniques de
calcul doivent pouvoir étre réutilisées dans des cas similaires.
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Exemple. Soit x € R tel que  # 0 [27]. On a

i cos(kz) = cos (%x) sin ("Tﬂx) ot i sin(kz) = sin (%x) sin (”T“x) .
= sin (%) ’ =0 sin (%)

n n )
Démonstration. En effet, on a > cos(kx) = Re (Z e"”), or
k=0 k=0

. . ) . jntly ([ jntly —intly R
ikx iz\k el(n+ o — 1 © © © iZx QSIH( 2 :E)

Z e = Z (e ) — o — = —= = ¢'2 oemn(z)

k=0 k=0 € e's (e'F —e7'%) sin (%)

car on a reconnu une somme géométrique, et comme z % 0 [27], e* = 1. On a ensuite utilisé la technique de
I’angle moitié, puis la formule d’Euler. Finalement, on obtient le résultat en prenant la partie réelle. On obtient
la deuxieme somme a ’aide du calcul ci-dessus, en prenant cette fois la partie imaginaire. O

Remarque. On retrouve aisément les formules de factorisation rencontrées dans le chapitre TRIGONOMETRIE. Par
exemple, si z,y € R, alors

z+ ]

. . . Lo— . _ + _
cosx + cosy = PRe(e” +e¥) = Re (el En (e 2 +e*ITy)) = Re (elgy X 2 cos = 5 y> — 2cos = 5 Yeos Y.

2

Les autres formules se retrouvent d’une maniére analogue.

d. Transformation d’expressions de la forme acosx + bsinx

I est parfois utile de récrire les expressions de la forme acosz + bsinz sous la forme Acos(z + #) ou encore
Asin(z + ).

Ecriture de acosz + bsinz sous la forme Acos(z + 0) ou Asin(z + 6).

— Pour parvenir a la forme A cos(x+6), on cherche z = a+if € C tel que acosz+bsinx = Re((a+if)e'®).
Ainsi, si z = Ael?, on a acosx + bsinz = Re(Ae' @) = Acos(z + 0).

— Pour parvenir & la forme Asin(z+6), on cherche z = a+if € C tel que acos z+bsinz = Jm((a+iB)e'®).
Ainsi, si 2 = Ael?, on a acosx + bsinz = Im(Ae!®+9)) = Asin(z + 0).

Exemple. Soit x € R. Ecrivons v/6 cos z — v/2sin x sous la forme A cos(z + 6).

On a v6cosz — v/2sinz = Re ((v6 + iv/2)(cosz + isinz)). On éerit z = v/6 + iv/2 sous forme trigo-
nométrique : on a |z| = 2v/2, et z = 2¢/2 (@ + %) = 24/2¢€'%, donc

V6cosz —\/2sinz = Re (2\/5(31(“%)) = 2v/2cos (x+%)

4. Exponentielle complexe

Définition - Exponentielle complexe

| Soit z = a + ib un nombre complexe, oti a,b € R. On appelle exponentielle de z, et on note e* le complexe e® e'®.

Remarques.

— Il n’y a pas d’ambiguité dans cette définition : si z € R ou si z € iR, on retrouve bien la définition de I’exponentielle

réelle, ou celle de I’exponentielle d’un imaginaire pur.

ez et arg(e?) = Jmz [27].

z+2ikm

-~ SizeC,ona le?|=e

—SizeC,onae* =e pour tout k € Z.

Théoreme - Propriétés de I'exponentielle complexe

. / / _—
Siz, 2/ €C,alors et = e*e*, et e % = eiz
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Démonstration. On écrit z et 2’ sous forme algébrique : z = a +ib et 2’ = @’ +1b’. On a alors

’ B SN, ’ . ’ ’
o e%e? = eaelbea elb — gata e1(b-ﬁ-b) = e*t?
—z _ a—a—ib _ 1 1 __ 1
ceF=e%" =S5 =2 O

/\ On prendra garde au fait que, contrairement au cas réel, il existe une infinité de logarithmes d’un complexe non
nul donné, en d’autres termes, ’équation e* = u, ou u € C* posseéde une infinité de solutions.

e = |u] . {a=1n|u|

En effet, si on écrit u = |ule!? et z = a + ib, alors '’équation se récrit { VNN A B [27]

Finalement, pour tout k € Z, z = In |u| + i(f + 2k7) est solution.

5. Racines de l'unité

Définition - Racines n-emes de I'unité, racines n-emes d’un complexe
Soit n € N*. On appelle racine n-eme de I'unité tout complexe z tel que 2™ = 1. On note U,, 'ensemble des
racines n-eme de l'unité.

Plus généralement, on appelle racine n-eme d’un complexe a tout complexe z tel que 2™ = a.

Théoréme - Racines n-émes de I'unité
Soit n € N*. L’ensemble U,, a exactement n éléments, et

2im

U, = {emvllm, k‘e[[O,n—l]]} = {WF, keo,n—1]}, otw,=¢e™n.

2im
Cas n = 3 : le complexe e3

est noté j, de sorte que Uz = {1,j,j%}.

Démonstration. On note z = |z|e!, on a alors 2™ = |z|"e™?, et

. el =1 o] =1 _ e
=1 = {ei"Q—l = nf = 0 [27] < 3JkeZ, z=en .

Si ke [0,n—1], on a %T" € [0, 2x[, donc les complexes e"™ sont tous distincts. Si k ¢ [0,n — 1], Qiff” est toujours
congru a un des angles précédents modulo 27. Il y a donc bien exactement n solutions a ’équation z" = 1. O

Exemples. U; = {_1’1}3 Us = {]—,j,jQ}a Uy = {1313 _1,_1}‘

Remarque. Sin > 3, les points du plan d’affixe dans U,, sont les sommets d’un polygone régulier a n cotés inscrit

dans le cercle trigonométrique.

Cas ot m = 3 : on obtient les points d’affixe 1, j = e’s et 2 = eMTﬂ, sommets d’un triangle équilatéral.

Théoreme - Somme des racines de I'unité

Si n € N*| la somme des racines n-émes de ['unité est nulle. Autrement dit,

n—1 n—1

2ikm %
I P
k=0 k=0

ol w = e . En particulier, 1 +j+j%=0.

Démonstration. Comme w =1, on a

n—1 n—1
i w™*—1

en = w" = =0, carw" =1 O
w—1

Remarque. On peut aussi calculer le produit des racines n-éme de 1'unité : si n € N*,

n—1 2ix "
n W = P N ZF oim(n—=1) _ (eiW)”*l = (—1)" L,
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Théoréme - Racines n-emes d’un complexe

Si a € C* a pour forme trigonométrique a = rel? et n e N*, alors a posséde exactement n racines n-eémes, données
par

Yrewe ™, oukel[0,n—1].

. . i0 BN L,
Démonstration. On remarque que a = rel’ = ({/rew) , dou

n
=a & 2" = ({L/Fe%)n = Zﬁ =1 < 3Jkelo,n-1], %:emﬁm, 0
Yren ¥ren

Exemple. Déterminons les racines cubiques de a = 8(v/2 — iv/6).

On commence par écrire le complexe v/2—i+/6 sous forme trigonométrique en le factorisant par son module :

V2-ivB = VB (4 —iY) = vBeiE. Ainsi, 2 = 8iciE

Comme \3/87% =87 =+8= 24/2, les racines cubiques de z sont données par
2V2e715 ) 22715, 2y2e7 18

Cest-a-dire 2v/2e718 | 24/2e° 2¢/2e 70"

Exercice 1. Soit n € N*. Montrer que les solutions de I’équation (z +1)" = (z — i)™ sont toutes réelles.

Solution. Soit z € C solution de I’équation. On a clairement z = i, et on a donc

M =1, Cc’est-a-dire Z+T = 1.
(z—=1)»
2ikm

On en déduit que 2t € U,,, donc il existe k € [0, — 1] tel que 2t} = e.T, donc z(e% —1) =i(e"» +1).On

z—1

remarque que k = 0, donc on a

2ik ikm ikm —ikw
ik
CoHm e (e teTn _ 2cos (£2) cos (Ex)
z =155 =1i— : =i = eR.
= ik ik _ikw 2i si km km
e n —1 e (e n —e " m 1sm(n sin (=
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