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Chapitre 6

Nombres complexes

I L’ensemble des nombres complexes
1. Définition

On admet ici l’existence de C, dont on détaille les opérations ci-dessous.

Il existe un ensemble noté C qui contient R, muni de deux opérations ` (addition) et ˆ (multiplication) vérifiant
les propriétés suivantes :

– C contient un élément i tel que i2 “ ´1,
– tout élément z de C s’écrit de manière unique sous la forme z “ x ` iy, où x, y P R,
– la somme et le produit de deux réels dans C coïncident avec la somme et le produit dans R, et l’addition

et la multiplication dans C ont les mêmes règles de calculs que dans R.

Les éléments de C sont appelés nombres complexes. Par ailleurs, si z “ x` iy P C, on dit que x est la partie réelle
de z, et on note x “ Repzq, et y est la partie imaginaire de z, et on note y “ Impzq. On appelle forme algébrique
de z l’écriture z “ x ` iy.
Si z P C est tel que Repzq “ 0, on dit que z est imaginaire pur, et on note z P iR.

Définition-théorème - Corps des nombres complexes

Remarque. L’égalité x ` iy “ x1 ` iy1 entre deux nombres complexes se traduit par deux égalités de nombres réels :
x “ x1 et y “ y1.

Les règles de calculs de l’addition et la multiplication dans C donnent alors les relations suivantes.

Si z, z1 P C,

Repz ` z1q “ Repzq ` Repz1q, Repzz1q “ RepzqRepz1q ´ Impzq Impz1q,

Impz ` z1q “ Impzq ` Impz1q, Impzz1q “ Repzq Impz1q ` ImpzqRepz1q.

Théorème - Opérations et parties réelles, imaginaires

Remarques.

– Si z P C, alors z admet un inverse pour la loi ` : ´z “ ´x` ip´yq. En effet, z` p´zq “ px´xq ` ipy´yq “ 0.
– Si z P C‹, alors z admet un inverse pour la loi ˆ : 1

z “
x´iy
x2`y2 . En effet, z ˆ 1

z “
px´iyqpx`iyq

x2`y2 “
x2`y2

x2`y2 “ 1.
– On en déduit que C est intègre : si z, z1 P C et zz1 “ 0, alors z “ 0 ou z1 “ 0. En effet, si z ­“ 0, alors 1

z zz
1 “ 0,

donc z1 “ 0.

Représentation graphique
On a pour habitude de représenter les nombres complexes dans un plan : on associe tout nombre complexe z au point
M de coordonnées pRepzq, Impzqq dans un plan P muni d’un repère orthonormal direct pO, ı⃗, ȷ⃗q. On dit alors que M
est l’image de z, et que z est l’affixe du point M .
On associe aussi habituellement un nombre complexe z au vecteur u⃗ de coordonnées pRepzq, Impzqq dans le plan P.
On dira encore que z est l’affixe du vecteur u⃗.

Remarques. Dans un plan P muni d’un repère orthonormal direct pO, ı⃗, ȷ⃗ q,

– si M est un point de P, alors l’affixe de M est celle du vecteur
´́ ´́ Ñ
OM ,

– si A et B sont des points de P d’affixes respectives zA et zB , alors l’affixe du vecteur
´́´́Ñ
AB est zB ´ zA,

– les réels ont pour image les points de l’axe pO, ı⃗ q appelé axe des réels, et les complexes imaginaires purs ont pour
image les points de l’axe pO, ȷ⃗ q appelé axe des imaginaires.
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2. Conjugué, module

Si z P C, on appelle conjugué de z le nombre complexe z̄ “ Repzq ´ i Impzq.
Définition - Conjugué d’un nombre complexe

Remarques. Si z P C,

– Repz̄q “ Repzq, et Impz̄q “ ´Impzq,
– le point d’affixe z̄ est le symétrique du point d’affixe z par rapport à l’axe des réels.

Si z, z1 P C,

¯̄z “ z, z ` z1 “ z̄ ` z̄1, zz1 “ z̄ z̄1, Repzq “
z ` z̄

2
, Impz1q “

z ´ z̄

2i
.

Théorème - Propriétés du conjugué

Démonstration. Exercice.

Exemple. Si z P C, alors 1 ` iz “ 1̄ ` ī z̄ “ 1 ´ iz̄.

Si z P C, on appelle module de z le réel |z| “
a

Repzq2 ` Impzq2.
Définition - Module d’un nombre complexe

Remarques.

– Si z P R, alors le module de z coïncide avec sa valeur absolue.
– Pour tout z P C, on a |Repzq| ď |z| et | Impzq| ď |z|.
– Dans le plan complexe, |z| représente la distance entre le point d’affixe 0 et le point d’affixe z.

Si z, z1 P C,
zz̄ “ |z|2, |z̄| “ |z|, |z| “ 0 ô z “ 0, |zz1| “ |z| |z1|, et si z1 ­“ 0,

ˇ

ˇ

ˇ

z

z1

ˇ

ˇ

ˇ
“

|z|

|z1|
.

Théorème - Propriétés du module

Démonstration. On note z “ x ` iy avec x, y P R.

– On a zz̄ “ px ` iyqpx ´ iyq “ x2 ´ piyq2 “ x2 ` y2 “ |z|2.
– On a |z̄| “

a

x2 ` p´yq2 “
a

x2 ` y2 “ |z|.
– On a |z| “ 0 ô x2 ` y2 “ 0 ô x2 “ y2 “ 0 ô x “ 0 et y “ 0 ô z “ 0.
– |zz1| “

?
zz1zz1 “

?
zz̄ z1z1 “

a

|z|2 |z1|2 “ |z| |z1|.
– Si z ­“ 0, alors

ˇ

ˇ

1
z

ˇ

ˇ ˆ |z| “
ˇ

ˇz ˆ 1
z

ˇ

ˇ “ |1| “ 1, donc
ˇ

ˇ

1
z

ˇ

ˇ “ 1
|z|

. Ainsi, si z1 ­“ 0, alors
ˇ

ˇ

z
z1

ˇ

ˇ “ |z| ˆ
ˇ

ˇ

1
z1

ˇ

ˇ “
|z|

|z1| .

Remarque. On retiendra que l’égalité zz̄ “ |z|2 permet d’écrire l’inverse de z P C‹ sous la forme 1
z “ z̄

|z|2
.

Exemples.

– Mise sous forme algébrique de z “ 1
3´i : on a z “ 3´i

|3´i|2 “ 3`i
10 “ 3

10 ` i 1
10 .

– Si z, z1 P C, alors |z ` z1|2 “ |z|2 ` 2Repzz̄1q ` |z1|2. En effet :

|z ` z1|2 “ pz ` z1qpz ` z1q “ pz ` z1qpz̄ ` z̄1q “ zz̄ ` zz̄1 ` z̄z1 ` z1z̄1 “ |z|2 ` zz̄1 ` zz̄1 ` |z1|2

“ |z|2 ` 2Repzz̄1q ` |z1|2.
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Si z, z1 P C, alors
|z ` z1| ď |z| ` |z1|,

et il y a égalité si et seulement s’il existe λ P R` tel que z “ λz1 ou z1 “ λz. On dit alors que z et z1 sont
positivement liés.

Inégalité triangulaire généralisée. Plus généralement, si z, z1 P C,
ˇ

ˇ|z| ´ |z1|
ˇ

ˇ ď |z ` z1| ď |z| ` |z1|

Théorème - Inégalité triangulaire

Démonstration. On a vu que |z ` z1|2 “ |z|2 ` 2Repzz̄1q ` |z1|2. Or on a Repzz̄1q ď |Repzz̄1q| ď |zz̄1| “ |z| |z1|. Ainsi,

|z ` z1|2 ď |z|2 ` 2 |z| |z1| ` |z1|2 “ p|z| ` |z1|q
2

Ainsi, en composant par la fonction racine qui est croissante sur R`, on obtient l’inégalité triangulaire.
Cas d’égalité.

– Supposons qu’il y a égalité. D’après ce qui précède, on a donc Repzz̄1q “ |Repzz̄1q| “ |zz̄1|. Ainsi,

– comme Repzz̄1q “ |Repzz̄1q|, on a Repzz̄1q P R`,
– comme Repzz̄1q2 “ |zz̄1|2 “ Repzz̄1q2 ` Impzz̄1q2, on a Impzz̄1q “ 0, donc zz̄1 P R.

Par conséquent, zz̄1 “ Repzz̄1q P R`, et on note α “ zz̄1 P R`. En multipliant par z1, on obtient αz1 “ |z1|2z. Si
z1 ­“ 0, alors z “ λz1 avec λ “ α

|z1|2 P R`. Si z1 “ 0, il est clair que z et z1 sont positivement liés.
– Réciproquement, si z et z1 sont positivement liés, alors il y a clairement égalité dans l’inégalité.

Inégalité triangulaire généralisée. Comme dans le cas réel, il suffit d’appliquer l’inégalité triangulaire de la manière
suivante :

|z| “ |z ` z1 ´ z1| ď |z ` z1| ` | ´ z1| “ |z ` z1| ` |z1|.

Ainsi, |z| ´ |z1| ď |z ` z1|. L’inégalité |z1| ´ |z| ď |z ` z1| se démontre de la même façon.

Remarques.

– Comme dans le cas de R, on peut en fait synthétiser les inégalités triangulaires par :
ˇ

ˇ|z| ´ |z1|
ˇ

ˇ ď |z ˘ z1| ď |z| ` |z1|.

– Géométriquement, la condition z et z1 positivement liés exprime que les vecteurs du plan d’affixes z et z1 sont
colinéaires dans le même sens.

3. Équations du second degré dans C

On appelle racine carrée complexe d’un nombre complexe z tout nombre complexe ω tel que ω2 “ z.
Définition - Racines carrées complexes

Exemple. Les nombres complexes i et ´i sont racines carrées complexes de ´1.

Contrairement à la racine carrée d’un nombre réel positif, il n’y a pas unicité de la racine carrée d’un nombre
complexe. La notation

?
x est donc interdite si on n’a pas x P R`.

Pour trouver les racines carrées complexes d’un nombre complexe z de forme algébrique a ` ib, on cherche les
complexes ω “ x ` iy avec x, y P R tels que ω2 “ z, c’est-à-dire x2 ´ y2 ` 2ixy “ a ` ib.
L’idée est d’ajouter la condition |ω|2 “ z2, qui est clairement vérifiée lorsque ω2 “ z, au système obtenu. On a :

ω2 “ z ô

"

ω2 “ z
|ω|2 “ |z|

ô

$

&

%

x2 ´ y2 “ a
2xy “ b

x2 ` y2 “
?
a2 ` b2

Ce dernier système permet d’obtenir facilement x2 et y2. La relation 2xy “ b donne par ailleurs le signe de x en

Recherche des racines carrées complexes
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fonction de celui de y, ce qui permet de trouver les couples px, yq qui conviennent.

Remarque. Comme nous le verrons plus loin, si z P C‹, on obtient toujours exactement deux racines complexes de z,
qui sont opposées.

Exemple. Déterminons les racines carrées complexes de z “ 3 ´ 4i.

On a |z| “ 5, donc si ω “ x ` iy avec x, y P R, on a :

ω2 “ z ô

"

ω2 “ z
|ω|2 “ |z|

ô

$

&

%

x2 ´ y2 “ 3
2xy “ ´4
x2 ` y2 “ 5

ô

$

&

%

x2 “ 4
y2 “ 1
xy “ ´2

La condition xy “ ´2 assure que a et b sont de signes opposés. On trouve donc que les deux racines de z
sont 2 ´ i et ´2 ` i.

Soient a, b, c P C avec a ­“ 0 et ∆ “ b2 ´ 4ac. Si δ est une racine carrée complexe de ∆, alors

– l’équation az2 ` bz ` c “ 0 a pour solutions (éventuellement confondues) z1 “
´b ´ δ

2a
et z2 “

´b ` δ

2a
,

– pour tout z P C, az2 ` bz ` c “ apz ´ z1qpz ´ z2q,
– on a z1 ` z2 “ ´ b

a , et z1z2 “ c
a .

Théorème - Équations du second degré

Démonstration. On note P pzq “ az2 ` bz ` c pour tout z P C. Nous allons mettre l’expression de P pzq

a sous la forme
canonique :

P pzq

a
“ z2 `

b

a
z `

c

a
“

ˆ

z `
b

2a

˙2

´
b2

4a2
`

c

a
“

ˆ

z `
b

2a

˙2

´
∆

4a2
“

ˆ

z `
b

2a

˙2

´

ˆ

δ

2a

˙2

Ainsi, P pzq

a
“

ˆ

z `
b

2a
`

δ

2a

˙ ˆ

z `
b

2a
´

δ

2a

˙

“ pz ´ z1q pz ´ z2q, et l’équation a pour seules solutions z1 et z2.

Par ailleurs, pour tout z P C, on a P pzq “ apz ´ z1qpz ´ z2q “ az2 ´ apz1 ` z2qz ` az1z2. Ainsi,
– on a P p0q “ az1z2, et comme on a aussi P p0q “ c, on en déduit que az1z2 “ c,
– on a P p1q “ a ´ apz1 ` z2q ` az1z2 “ a ´ apz1 ` z2q ` c, et comme on a aussi P p1q “ a ` b ` c, on en déduit

que b “ ´apz1 ` z2q.

Exemple. Résolvons l’équation 2z2 ´ p1 ` 5iqz ´ 2p1 ´ iq “ 0.

Le discriminant de l’équation vaut p1 ` 5iq2 ` 16p1 ´ iq “ ´8 ´ 6i, qui a pour racines complexes 1 ´ 3i et
´1 ` 3i. Les solutions sont donc données par :

1 ` 5i ˘ p1 ´ 3iq

4
, c’est-à-dire 1 ` i

2
et 2i.

Soient u, v P C. Si z1, z2 P C, alors on a :
"

z1 ` z2 “ u
z1z2 “ v

ô
z1 et z2 sont les solutions (éventuellement confondues)

de l’équation z2 ´ uz ` v “ 0

Théorème - Système somme-produit

Démonstration. On sait que z1 et z2 sont solutions de l’équation pz ´ z1qpz ´ z2q “ 0, i.e. z2 ´ pz1 ` z2qz ` z1z2 “ 0.
Si z1 ` z2 “ u et z1z2 “ v, alors cette équation se récrit z2 ´ uz ` v “ 0.
Le sens réciproque a été démontré dans le théorème précédent.

Remarque. Une conséquence est que pour tous nombres complexes u, v, il existe un couple de nombres complexes
dont la somme est u et le produit v.
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4. Fonctions polynomiales complexes

On dit qu’une fonction P : C Ñ C est polynomiale s’il existe n P N et a0, . . . , an P C tels que

@z P C, P pxq “ anz
n ` . . . ` a1z ` a0.

On dit que a P C est une racine de la fonction polynomiale P si P paq “ 0.

Définition - Fonction polynomiale, racine

Le résultat suivant relie la factorisation d’une fonction polynomiale complexe et ses racines. Il sera démontré dans le
chapitre Polynômes.

Soit P : C Ñ C une fonction polynomiale. Si a est une racine de P , alors il existe une fonction polynomiale
Q : C Ñ C telle que

@z P C, P pzq “ pz ´ aqQpzq.

Théorème - Fonction polynomiale et racines

II Exponentielle complexe
1. Nombres complexes de module 1

– On note U l’ensemble nombres complexes de module 1.
– Pour tout x P R, on note

eix “ cosx ` i sinx.

Notation - Ensemble U, exponentielle d’un imaginaire pur

Exemples. e2iπ “ ei0 “ 1, ei
π
2 “ i, e´iπ2 “ ´i, eiπ “ ´1.

Remarques.

– Les points d’affixe z P U ne sont autres que les points du cercle trigonométrique. Plus précisément, le point M
d’affixe eix est le point du cercle trigonométrique tel que p

Ñ́
ı ,

´́ ´́ Ñ
OM q ” x r2πs.

– Pour tout x P R, |eix|2 “ cos2 x ` sin2 x “ 1, donc eix P U.
– Si z P C‹, alors z

|z|
P U. En effet,

ˇ

ˇ

ˇ

z
|z|

ˇ

ˇ

ˇ
“

|z|

|z|
“ 1.

Le résultat suivant repose directement sur la définition des fonctions circulaires cos et sin.

Soit z P U, il existe θ P R tel que z “ eiθ. Par ailleurs, pour tous x, y P R,

eix “ eiy ô x ” y r2πs.

Par conséquent, le réel θ tel que z “ eiθ est unique à 2π près.

Théorème - Paramétrisation de U

Exemple. On a eix “ 1 si et seulement si x ” 0 r2πs.

i. Pour tous x, y P R, on a eipx`yq “ eix eiy, et eix “ e´ix “ 1
eix .

ii. Formule de Moivre. Si x P R et n P Z, alors einx “ peixq
n, i.e.

"

cospnxq “ Re ppcosx ` i sinxqnq

sinpnxq “ Im ppcosx ` i sinxqnq

iii. Formule d’Euler. Si x P R, alors

cosx “
eix ` e´ix

2
, sinx “

eix ´ e´ix

2i
.

Théorème - Propriétés de l’exponentielle d’un imaginaire pur

Lycée Montesquieu 5



MPSI – Mathématiques 2025-26

Démonstration.

i. – On a eix eiy “ pcosx ` i sinxq pcos y ` i sin yq “ pcosx cos y ´ sinx sin yq ` i pcosx sin y ` sinx cos yq. Les
formules d’addition permettent de conclure.

– On a eix “ cosx ´ i sinx “ cosp´xq ` i sinp´xq “ e´ix. Par ailleurs,

1

eix
“

cosx ´ i sinx

pcosx ` i sinxq pcosx ´ i sinxq
“

cosx ´ i sinx

cos2 x ` sin2 x
“ cosx ´ i sinx “ e´ix.

ii. Il suffit de remarquer qu’on a peixq
n

“ einx d’après le point précédent par récurrence immédiate.

iii. On a cosx “ Repeixq “
eix ` eix

2
“

eix ` e´ix

2
, et sinx “ Impeixq “

eix ´ eix

2i
“

eix ´ e´ix

2i
.

2. Forme trigonométrique

Si z P C‹, il existe un unique réel r ą 0 et un réel θ unique à 2π près tels que z “ reiθ.

– Un tel réel θ est appelé un argument de z.
– On a r “ |z|.

On dit alors que z est écrit sous forme trigonométrique, ou exponentielle.
On appelle argument principal de z son unique argument dans s ´ π, πs, on le note arg z.

Définition-théorème - Argument, forme trigonométrique

Démonstration. Existence : comme z
|z|

P U, il existe θ P R tel que z
|z|

“ eiθ, donc z “ |z|eiθ.
Unicité : si z “ reiθ avec r ą 0, alors |z| “ |r| “ r. Par ailleurs, on a alors z

|z|
“ eiθ, et on sait que θ est unique à

2π-près.

Exemples. – Forme trigonométrique de z “ 1 ` i
?
3 : on a z “ 2

´

1
2 ` i

?
3
2

¯

“ 2ei
π
3 . Ainsi, arg z “ π

3 .
– On a ´2 “ 2eiπ, donc argp´2q “ π.
– On a 3i “ 3ei

π
2 , donc argp3iq “ π

2 .

Remarques. – Pour tous z, z1 P C‹, on a z “ z1 ô

"

|z| “ |z1|

arg z ” arg z1 r2πs

– Si z P C‹, alors : ˛ z P R ô arg z ” 0 rπs,
˛ z P iR ô arg z ” π

2 rπs.

Pour déterminer la forme trigonométrique d’un nombre complexe, on pourra commencer par mettre en facteur
son module, puis rechercher son argument.

Déterminer la forme trigonométrique d’un complexe

Exemple. Déterminons la forme trigonométrique de z “
?
6 ´ i

?
2.

On a |z| “ 2
?
2, et z se récrit z “ 2

?
2

´ ?
3
2 ´ 1

2 i
¯

“ 2
?
2 e´iπ6 .

Remarque. On ne reconnaît pas toujours la forme trigonométrique d’un nombre complexe de module 1 dans la
démarche ci-dessus. On peut néanmoins toujours exprimer l’argument en ayant recours à la fonction arctan. Le
résultat ci-dessous permet d’y parvenir.

Soit z un complexe de forme algébrique z “ a ` ib avec a ­“ 0, et de forme trigonométrique z “ reiθ. On a :

tan θ “
b

a
.

Théorème
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Remarques.

– Avec les notations du résultats ci-dessus, si a ą 0 : on a θ Ps ´ π
2 ,

π
2 r, donc θ “ arctan θ. Sinon, on utilise la

relation tanpθ ` πq “ b
a ou tanpθ ´ πq “ b

a pour déterminer θ.
– De manière similaire, on peut exprimer θ en ayant recours à la fonction arccos ou arcsin.

Exemple. Cherchons l’argument principal θ de z “ ´2 ` i.

On a tan θ “ ´ 1
2 . D’autre part, on sait que θ Psπ2 , πr, donc θ´π Ps ´ π

2 , 0r. Ainsi, comme tanpθ´πq “ ´ 1
2 ,

on a θ ´ π “ arctan
`

´ 1
2

˘

, et θ “ π ´ arctan 1
2 .

Soient z, z1 P C‹. On a

i. argpzz1q ” arg z ` arg z1 r2πs.

ii. arg z
z1 ” arg z ´ arg z1 r2πs.

iii. argpz̄q ” ´ arg z r2πs.

iv. argp´zq ” π ` arg z r2πs.

Théorème - Propriétés des arguments

Démonstration.

i. On a zz1 “ |z|ei arg z|z1| ei arg z1
“ |zz1|eiparg z`arg z1q, donc argpzz1q ” arg z ` arg z1 r2πs.

ii. On a z
z1 “

|z|ei arg z

|z1|ei arg z1 “
ˇ

ˇ

z
z1

ˇ

ˇ eiparg z´arg z1q, donc arg z
z1 ” arg z ´ arg z1 r2πs.

iii. On a z̄ “ |z|ei arg z “ |z|e´i arg z, donc argpz̄q ” ´ arg z r2πs.
iv. On a ´z “ eiπ|z|ei arg z “ |z|eipπ`arg zq, donc argp´zq ” π ` arg z r2πs.

Interprétation géométrique.

– Si M est le point du plan d’affixe z “ reiθ avec r ą 0, alors OM “ r et p
Ñ́
ı ,

´́ ´́ Ñ
OM q ” θ r2πs.

– Si Ñ́
u et Ñ́

v sont d’affixes respectives z “ reiθ et z1 “ r1eiθ
1 avec r, r1 P R‹

`, alors p
Ñ́
u,

Ñ́
v q ” θ1 ´θ r2πs. Autrement

dit,
p

Ñ́
u,

Ñ́
v q ” arg z1 ´ arg z r2πs ” arg

z1

z
r2πs.

– Si A,B,C sont trois points distincts du plan, d’affixes respectives zA, zB , zC , alors

p
´́´́Ñ
AB ,

´́´́Ñ
AC q ” argpzB ´ zAq ´ argpzC ´ zAq r2πs ” arg

zB ´ zA
zC ´ zA

r2πs.

Ainsi, pour connaître l’angle p
´́´́Ñ
AB ,

´́´́Ñ
AC q, on peut se ramener à une recherche d’argument de zB´zA

zC´zA
. On déduit alors

le résultat suivant.

Soient A,B,C sont trois points distincts du plan, d’affixes respectives zA, zB , zC .

– Les points A,B,C sont alignés si et seulement si zB ´ zA
zC ´ zA

P R.

– Les vecteurs
´́´́Ñ
AB et

´́´́Ñ
AC sont orthogonaux si et seulement si zB ´ zA

zC ´ zA
P iR.

Théorème

Démonstration. On note w “
zB ´ zA
zC ´ zA

.

– Les points A,B,C sont alignés si et seulement si les vecteurs sont colinéaires, c’est-à-dire p
´́´́Ñ
AB ,

´́´́Ñ
AC q ” 0 rπs.

D’après ce qui précède, ceci se récrit argw ” 0 r2πs, c’est-à-dire w P R.
– Les vecteurs

´́´́Ñ
AB et

´́´́Ñ
AC sont orthogonaux si et seulement si p

´́´́Ñ
AB ,

´́´́Ñ
AC q ” π

2 rπs, c’est-à-dire argw ” π
2 rπs, ou

encore w P iR.

Lycée Montesquieu 7



MPSI – Mathématiques 2025-26

3. Techniques de calcul

a. Linéarisation

Il arrive qu’on souhaite transformer une expression faisant apparaître des puissances de cosx et sinx en une
combinaison linéaire de termes de la forme cospkxq ou sinpkxq. On dit qu’on linéarise l’expression.

Linéarisation. Dans la pratique, on utilise la formule d’Euler, puis celle du binôme de Newton. On regroupe
les termes et on utilise à nouveau la formule d’Euler pour conclure.

Exemple. Linéarisons pcosxq3 :

cos3 x “

ˆ

eix ` e´ix

2

˙3

“
e3ix ` 3eix ` 3e´ix ` e´3ix

8
“

1

4

ˆ

e3ix ` e´3ix

2
` 3

eix ` e´ix

2

˙

donc cos3 x “ 1
4 pcosp3xq ` 3 cosxq, à nouveau par la formule d’Euler.

Remarque. Ceci permet de trouver une primitive de la fonction f : x ÞÑ cos3 x : on peut choisir la fonction
F : x ÞÑ 1

4

´

sinp3xq

3 ` 3 sinx
¯

.

Plus généralement, cette technique permet de trouver une primitive de toute fonction de la forme x ÞÑ cosp x sinq x,
où p, q P N.

b. Délinéarisation

Il arrive qu’on ait besoin de faire l’opération inverse : écrire une expression faisant intervenir des termes de la
forme cosppxq ou sinpqxq en fonction de puissances de cosx et de sinx.

Linéarisation. Dans la pratique, on utilise la formule de Moivre, puis celle binôme.

Exemple. Délinéarisons sinp3xq : on a sinp3xq “ Impe3ixq “ Im
`

peixq
3˘

“ Im
`

pcosx ` i sinxq3
˘

. Or

pcosx ` i sinxq3 “ cos3 x ` 3i cos2 x sinx ´ 3 cosx sin2 x ´ i sin3 x

“ pcos3 x ´ 3 cosx sin2 xq ` i p3 cos2 x sinx ´ sin3 xq.

donc sinp3xq “ 3 cos2 x sinx ´ sin3 x, ou sinp3xq “ sinx p4 cos2 x ´ 1q, du fait que sin2 x “ 1 ´ cos2 x.
On a par ailleurs aussi trouvé que cosp3xq “ cos3 x ´ 3 cosx sin2 x.

c. Angle moitié

Il est très souvent utile de savoir écrire sous forme trigonométrique une expression de la forme eix `eiy, ou encore
eix ´ eiy. Pour ce faire, on a recours à la technique dite de l’angle moitié.

Factorisation par l’angle moitié. On factorise l’expression eix ` eiy ou eix ` eiy par ei
x`y
2 , de telle sorte

qu’on obtient

eix ` eiy “ ei
x`y
2

´

ei
x´y
2 ` e´i x´y

2

¯

“ 2 cos
x ´ y

2
ei

x`y
2 ,

eix ´ eiy “ ei
x`y
2

´

ei
x´y
2 ´ e´i x´y

2

¯

“ 2i sin
x ´ y

2
ei

x`y
2 .

Remarques.

– Notons qu’on n’obtient pas toujours la forme trigonométrique directement, mais il est aisé de l’en déduire.
– Très souvent, on utilise ce procédé pour simplifier des expressions de la forme eix ` 1 ou eix ´ 1, on est alors

amené à factoriser par ei
x
2 .

L’exemple suivant faire partie des résultats qu’il faut absolument savoir retrouver, et dont les techniques de
calcul doivent pouvoir être réutilisées dans des cas similaires.
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Exemple. Soit x P R tel que x ı 0 r2πs. On a
n

ÿ

k“0

cospkxq “
cos

`

n
2x

˘

sin
`

n`1
2 x

˘

sin
`

x
2

˘ , et
n

ÿ

k“0

sinpkxq “
sin

`

n
2x

˘

sin
`

n`1
2 x

˘

sin
`

x
2

˘ .

Démonstration. En effet, on a
n
ř

k“0

cospkxq “ Re

ˆ

n
ř

k“0

eikx
˙

, or

n
ÿ

k“0

eikx “

n
ÿ

k“0

`

eix
˘k

“
eipn`1qx ´ 1

eix ´ 1
“

ei
n`1
2 x

´

ei
n`1
2 x ´ e´in`1

2 x
¯

ei
x
2

`

ei
x
2 ´ e´i x2

˘ “ ei
n
2 x 2 sin

`

n`1
2 x

˘

2 sin
`

x
2

˘ ,

car on a reconnu une somme géométrique, et comme x ı 0 r2πs, eix ­“ 1. On a ensuite utilisé la technique de
l’angle moitié, puis la formule d’Euler. Finalement, on obtient le résultat en prenant la partie réelle. On obtient
la deuxième somme à l’aide du calcul ci-dessus, en prenant cette fois la partie imaginaire.

Remarque. On retrouve aisément les formules de factorisation rencontrées dans le chapitre Trigonométrie. Par
exemple, si x, y P R, alors

cosx ` cos y “ Repeix ` eiyq “ Re
´

ei
x`y
2

´

ei
x´y
2 ` e´i x´y

2

¯¯

“ Re

ˆ

ei
x`y
2 ˆ 2 cos

x ´ y

2

˙

“ 2 cos
x ` y

2
cos

x ´ y

2
.

Les autres formules se retrouvent d’une manière analogue.

d. Transformation d’expressions de la forme a cos x + b sin x

Il est parfois utile de récrire les expressions de la forme a cosx ` b sinx sous la forme A cospx ` θq ou encore
A sinpx ` φq.

Écriture de a cosx ` b sinx sous la forme A cospx ` θq ou A sinpx ` θq.

– Pour parvenir à la forme A cospx`θq, on cherche z “ α`iβ P C tel que a cosx`b sinx “ Reppα`iβqeixq.
Ainsi, si z “ Aeiθ, on a a cosx ` b sinx “ RepAeipx`θqq “ A cospx ` θq.

– Pour parvenir à la forme A sinpx`θq, on cherche z “ α`iβ P C tel que a cosx`b sinx “ Imppα`iβqeixq.
Ainsi, si z “ Aeiθ, on a a cosx ` b sinx “ ImpAeipx`θqq “ A sinpx ` θq.

Exemple. Soit x P R. Écrivons
?
6 cosx ´

?
2 sinx sous la forme A cospx ` θq.

On a
?
6 cosx ´

?
2 sinx “ Re

`

p
?
6 ` i

?
2qpcosx ` i sinxq

˘

. On écrit z “
?
6 ` i

?
2 sous forme trigo-

nométrique : on a |z| “ 2
?
2, et z “ 2

?
2

´ ?
3
2 ` i

2

¯

“ 2
?
2 ei

π
6 , donc

?
6 cosx ´

?
2 sinx “ Re

´

2
?
2eipx` π

6 q
¯

“ 2
?
2 cos

´

x `
π

6

¯

.

4. Exponentielle complexe

Soit z “ a` ib un nombre complexe, où a, b P R. On appelle exponentielle de z, et on note ez le complexe ea eib.
Définition - Exponentielle complexe

Remarques.

– Il n’y a pas d’ambiguïté dans cette définition : si z P R ou si z P iR, on retrouve bien la définition de l’exponentielle
réelle, ou celle de l’exponentielle d’un imaginaire pur.

– Si z P C, on a |ez| “ eRe z, et argpezq ” Im z r2πs.
– Si z P C, on a ez “ ez`2ikπ pour tout k P Z.

Si z, z1 P C, alors ez`z1
“ ez ez

1 , et e´z “ 1
ez .

Théorème - Propriétés de l’exponentielle complexe
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Démonstration. On écrit z et z1 sous forme algébrique : z “ a ` ib et z1 “ a1 ` ib1. On a alors

˛ ezez
1

“ eaeibea
1
eib

1
“ ea`a1

eipb`b1q “ ez`z1 .
˛ e´z “ e´ae´ib “ 1

ea
1
eib

“ 1
ez .

On prendra garde au fait que, contrairement au cas réel, il existe une infinité de logarithmes d’un complexe non
nul donné, en d’autres termes, l’équation ez “ u, où u P C‹ possède une infinité de solutions.

En effet, si on écrit u “ |u|eiθ et z “ a ` ib, alors l’équation se récrit
"

ea “ |u|

eib “ eiθ
, i.e.

"

a “ ln |u|

b ” θ r2πs
.

Finalement, pour tout k P Z, z “ ln |u| ` ipθ ` 2kπq est solution.

5. Racines de l’unité

Soit n P N‹. On appelle racine n-ème de l’unité tout complexe z tel que zn “ 1. On note Un l’ensemble des
racines n-ème de l’unité.
Plus généralement, on appelle racine n-ème d’un complexe a tout complexe z tel que zn “ a.

Définition - Racines n-èmes de l’unité, racines n-èmes d’un complexe

Soit n P N‹. L’ensemble Un a exactement n éléments, et

Un “

!

e
2ikπ
n , k P J0, n ´ 1K)

“ tωk, k P J0, n ´ 1Ku, où ωn “ e
2iπ
n .

Cas n “ 3 : le complexe e
2iπ
3 est noté j, de sorte que U3 “ t1, j, j2u.

Théorème - Racines n-èmes de l’unité

Démonstration. On note z “ |z|eiθ, on a alors zn “ |z|neinθ, et

zn “ 1 ô

"

|z|n “ 1
einθ “ 1

ô

"

|z| “ 1
nθ ” 0 r2πs

ô Dk P Z, z “ e
2ikπ
n .

Si k P J0, n ´ 1K, on a 2kπ
n P r0, 2πr, donc les complexes e

2ikπ
n sont tous distincts. Si k R J0, n ´ 1K, 2ikπ

n est toujours
congru à un des angles précédents modulo 2π. Il y a donc bien exactement n solutions à l’équation zn “ 1.

Exemples. U2 “ t´1, 1u, U3 “ t1, j, j2u, U4 “ t1, i,´1,´iu.

Remarque. Si n ě 3, les points du plan d’affixe dans Un sont les sommets d’un polygone régulier à n côtés inscrit
dans le cercle trigonométrique.
Cas où n “ 3 : on obtient les points d’affixe 1, j “ e

2iπ
3 et j2 “ e

4iπ
3 , sommets d’un triangle équilatéral.

Si n P N‹, la somme des racines n-èmes de l’unité est nulle. Autrement dit,
n´1
ÿ

k“0

e
2ikπ
n “

n´1
ÿ

k“0

ωk “ 0,

où ω “ e
2iπ
n . En particulier, 1 ` j ` j2 “ 0.

Théorème - Somme des racines de l’unité

Démonstration. Comme ω ­“ 1, on a
n´1
ÿ

k“0

e
2ikπ
n “

n´1
ÿ

k“0

ωk “
ωn ´ 1

ω ´ 1
“ 0, car ωn “ 1.

Remarque. On peut aussi calculer le produit des racines n-ème de l’unité : si n P N‹,

ź

ωPUn

ω “

n´1
ź

k“0

e
2ikπ
n “ e

2iπ
n

n´1
ř

k“0

k
“ eiπpn´1q “ peiπq

n´1
“ p´1qn´1.
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Si a P C‹ a pour forme trigonométrique a “ reiθ et n P N‹, alors a possède exactement n racines n-èmes, données
par

n
?
r e

iθ
n e

2ikπ
n , où k P J0, n ´ 1K.

Théorème - Racines n-èmes d’un complexe

Démonstration. On remarque que a “ reiθ “
`

n
?
r e

iθ
n

˘n
, d’où

zn “ a ô zn “
`

n
?
r e

iθ
n

˘n
ô

˜

z
n
?
r e

iθ
n

¸n

“ 1 ô Dk P J0, n ´ 1K, z
n
?
r e

iθ
n

“ e
2ikπ
n .

Exemple. Déterminons les racines cubiques de a “ 8p
?
2 ´ i

?
6q.

On commence par écrire le complexe
?
2´i

?
6 sous forme trigonométrique en le factorisant par son module :

?
2 ´ i

?
6 “

?
8

´

1
2 ´ i

?
3
2

¯

“
?
8e´iπ3 . Ainsi, z “ 8

3
2 e´iπ3 .

Comme 3
a

8
3
2 “ 8

1
2 “

?
8 “ 2

?
2, les racines cubiques de z sont données par

2
?
2e´iπ9 , 2

?
2e´iπ9 e

2iπ
3 , 2

?
2e´iπ9 e

4iπ
3 ,

c’est-à-dire 2
?
2e´iπ9 , 2

?
2e

5iπ
9 , 2

?
2e

´7iπ
9 .

Exercice 1. Soit n P N‹. Montrer que les solutions de l’équation pz ` iqn “ pz ´ iqn sont toutes réelles.
Solution. Soit z P C solution de l’équation. On a clairement z ­“ i, et on a donc

pz ` iqn

pz ´ iqn
“ 1, c’est-à-dire

ˆ

z ` i

z ´ i

˙n

“ 1.

On en déduit que z`i
z´i

P Un, donc il existe k P J0, n ´ 1K tel que z`i
z´i

“ e
2ikπ
n , donc z

`

e
2ikπ
n ´ 1

˘

“ i
`

e
2ikπ
n ` 1

˘

. On
remarque que k ­“ 0, donc on a

z “ i
e

2ikπ
n ` 1

e
2ikπ
n ´ 1

“ i
e

ikπ
n

´

e
ikπ
n ` e

´ikπ
n

¯

e
ikπ
n

´

e
ikπ
n ´ e´ ikπ

n

¯ “ i
2 cos

`

kπ
n

˘

2i sin
`

kπ
n

˘ “
cos

`

kπ
n

˘

sin
`

kπ
n

˘ P R.
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