
MPSI – Mathématiques 2025-26

Chapitre 5

Trigonométrie

I Fonctions circulaires
Notation. Si α P R‹

` et x, y P R, on note x ” y rαs s’il existe k P Z tel que y ´ x “ kα.

1. Définitions

Rappel.
On considère le plan muni d’un repère orthonormé pO,

Ñ́
ı ,

Ñ́
ȷ q. Pour tout

x P R, on note Mx l’unique point du cercle trigonométrique (cercle de
rayon 1 centré en O) tel que p

Ñ́
ı ,

´́´́ ´́Ñ
OMx q ” x r2πs. On note alors

cosx : l’abscisse de Mx,

sinx : l’ordonnée de Mx.

On définit ainsi sur R les fonction sinus et cosinus par respectivement
x ÞÑ sinx et x ÞÑ cosx.
Pour tout x P Rz

␣

π
2 ` kπ, k P Z

(

, on définit par ailleurs

tanx “
sinx

cosx
.

x 0
π

6

π

4

π

3

π

2
π

cosx 1

?
3

2

?
2

2

1

2
0 ´1

sinx 0
1

2

?
2

2

?
3

2
1 0

tanx 0
1

?
3

1
?
3 ´ 0

Valeurs remarquables

i. Pour tout réel x, ´1 ď cosx ď 1 et ´1 ď sinx ď 1.
ii. Les fonctions cosinus et sinus sont 2π-périodiques sur R.

iii. La fonction cosinus est paire et la fonction sinus est impaire.
iv. Pour tout réel x, cos2pxq ` sin2pxq “ 1.
v. Pour tout x P Rz

␣

π
2 ` kπ, k P Z

(

, 1 ` tan2 x “ 1
cos2 x .

Théorème - Propriétés des fonctions sinus et cosinus

2. Formules de trigonométrie

Les formules suivante, dites d’addition, doivent être connues par cœur. Elles serviront souvent de base pour retrouver
les autres formules qui suivront.

Soient a, b deux réels, si les expressions suivantes ont un sens, alors :

cospa ` bq “ cos a cos b ´ sin a sin b, cospa ´ bq “ cos a cos b ` sin a sin b,

sinpa ` bq “ sin a cos b ` sin b cos a, sinpa ´ bq “ sin a cos b ´ sin b cos a,

tanpa ` bq “
tan a ` tan b

1 ´ tan a tan b
, tanpa ´ bq “

tan a ´ tan b

1 ` tan a tan b
.

Théorème - Formules d’addition

On déduit directement les formules de duplication ci-dessous, qui s’avèrent souvent très utiles.

Si a P R,

cosp2aq “ cos2 a ´ sin2 a “ 1 ´ 2 sin2 a “ 2 cos2 a ´ 1,

Corollaire - Formules de duplication
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sinp2aq “ 2 sin a cos a,

tanp2aq “
2 tan a

1 ´ tan2 a
, si a R

␣

π
4 ` k π

2 , k P Z
(

.

Remarque. On retiendra également l’écriture cos2 a “
1 ` cosp2aq

2
et sin2 a “

1 ´ cosp2aq

2
.

Si a, b P R, alors

cos a cos b “ 1
2 pcospa ` bq ` cospa ´ bqq,

sin a sin b “ 1
2 pcospa ´ bq ´ cospa ` bqq,

sin a cos b “ 1
2 psinpa ` bq ` sinpa ´ bqq.

Corollaire - Formules de linéarisation

Ces formules ne sont pas à apprendre par cœur, mais à bien comprendre, et à savoir retrouver de tête à partir des
formules d’addition. Les variantes suivantes s’avèrent parfois bien utiles également.

Si x, y P R, alors

cosx ` cos y “ 2 cos
x ` y

2
cos

x ´ y

2
, cosx ´ cos y “ 2 sin

x ` y

2
sin

y ´ x

2
,

sinx ` sin y “ 2 sin
x ` y

2
cos

x ´ y

2
.

Corollaire - Formules de factorisation

Les formules ci-dessous doivent pouvoir être retrouvées très rapidement à partir du cercle trigonométrique.

Pour tout x P R,

cospπ ` xq “ ´ cosx, cospπ ´ xq “ ´ cosx,

sinpπ ` xq “ ´ sinx, sinpπ ´ xq “ sinpxq,

cos
`

π
2 ` x

˘

“ ´ sinx, cos
`

π
2 ´ x

˘

“ sinx,

sin
`

π
2 ` x

˘

“ cosx, sin
`

π
2 ´ x

˘

“ cosx.

xπ ´ x

π ` x

π
2 ´ xπ

2 ` x
Théorème - Symétrie

Démonstration. Ces formules peuvent être montrées directement en utilisant les formules d’addition des fonctions cos
et sin.

Si x, y P R, alors
cosx “ cos y ssi x ” y r2πs ou x ” ´y r2πs,

sinx “ sin y ssi x ” y r2πs ou x ” π ´ y r2πs.

Théorème - Résolution d’équations trigonométriques

Remarque. Pour résoudre une équation de la forme cosx “ α, ou sinx “ α, où α P R. On commence alors par essayer
d’écrire α sous la forme cos y ou sin y.

Exemple. Résolution de l’équation sinp2xq “
?
3
2 sur r0, 2πr.

Solution. L’équation se récrit sinp2xq “ sin π
3 , or

sinp2xq “ sin
π

3
ô 2x ”

π

3
r2πs ou 2x ”

2π

3
r2πs ô x ”

π

6
rπs ou x ”

π

3
rπs.

Finalement, les solutions dans R sont les réels de la forme π
6 ` kπ ou π

3 ` kπ, avec k P Z. Par conséquent,
les solutions dans r0, 2πr sont π

6 , π
3 , 7π

6 , 4π
3 .
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3. Étude des fonctions circulaires

On a
lim
xÑ0

sinx

x
“ 1, lim

xÑ0

1 ´ cosx

x2
“

1

2
.

Théorème - Limites usuelles

Démonstration.

O

Mx

O

B

A

Soit x Ps0, π
2 r. Une comparaison de l’aire du triangle OAMx, l’aire du secteur angulaire entre A

et Mx et l’aire du triangle OAB donne :

sinx

2
ď

x

2
ď

tanx

2
, donc cosx ď

sinx

x
ď 1,

car x ą 0 et cosx ą 0. Par conséquent, on a sin x
x ÝÑ

xÑ0`
1 par encadrement.

Comme pour tout x P R‹, sin x
x “

sinp´xq

´x , on a aussi sin x
x ÝÑ

xÑ0´
1, donc sin x

x ÝÑ
xÑ0

1.

Si x P R‹, on a :

cosx ´ 1

x2
“

pcosx ´ 1qpcosx ` 1q

x2pcosx ` 1q
“

cos2 x ´ 1

x2pcosx ` 1q
“

sin2 x

x2pcosx ` 1q
“ ´

ˆ

sinx

x

˙2
1

cosx ` 1
ÝÑ
xÑ0

´
1

2
.

Remarque. Ces résultats expriment que, au voisinage de 0, ˛ sinx “ressemble” à x,
˛ cosx “ressemble” à 1 ´ x2

2 .

Les fonctions sin et cos sont dérivables sur R, et on a

sin1 “ cos, cos1 “ ´ sin .

Théorème - Dérivées des fonctions sinus et cosinus

Démonstration. Si x P R‹, on a

sinpx ` hq ´ sinx

h
“

sinx cosh ` sinh cosx ´ sinx

h
“

sinxpcosh ´ 1q ` sinh cosx

h

“ h sinx
cosh ´ 1

h2
`

sinh

h
cosx ÝÑ

hÑ0
cosx

car sinh
h ÝÑ

hÑ0
0 et cosh´1

h2 ÝÑ
hÑ0

´ 1
2 . Ainsi, sin est dérivable en tout point x P R‹, et sin1pxq “ cosx.

Comme pour tout x P R, cosx “ sin
`

π
2 ´ x

˘

, la fonction cos est dérivable sur R comme fonction composée, et pour
tout x P R, cos1pxq “ ´ sin1

`

π
2 ´ x

˘

“ ´ cos
`

π
2 ´ x

˘

“ ´ sinx.

Graphe des fonctions cosinus et sinus On déduit alors du signe de cos et sin les variations de sin et cos, et on obtient
les graphes suivants.

Csin

Ccos

π
2

π 3π
2

2π-π´2π

´1

Remarques.

– Comme cosx “ sinpx` π
2 q pour tout x P R, on obtient la courbe de sin à partir de celle de cos par une translation

de vecteur π
2 ı⃗.

– Comme sinx “ sinpπ ´ xq pour tout x P R, la courbe de sin a une symétrie d’axe x “ π
2 .
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– La fonction tan est impaire, π-périodique et dérivable sur Rz
␣

π
2 ` kπ, k P Z

(

, et

tan1 “
1

cos2
“ 1 ` tan2 .

– Limites : lim
xÑ´ π

2
`

“ ´8 lim
xÑ π

2
´

“ `8.

– Graphe :

5π

2
´

5π

2

π

2
´

π

2

3π

2
´

3π

2

– Équations trigonométriques : si x, y P R, alors tanx “ tan y ô x ” y rπs.

Théorème - Propriétés de la fonction tangente

Démonstration.

– La fonction tan est impaire sur D “ Rz
␣

π
2 ` kπ, k P Z

(

car sin est impaire et cos est impaire sur D .
– Pour tout x P R, on a x P D ô x ` π P D , et pour tout x P D ,

tanpx ` πq “
sinpx ` πq

cospx ` πq
“

´ sinx

´ cosx
“ tanx.

– Les limites se déduisent des limites lim
xÑ π

2
´
sinx “ 1 et lim

xÑ π
2

´
cosx “ 0`.

– On peut restreindre l’étude de la fonction à l’intervalle
“

0, π
2

“

par π-périodicité et imparité. Sur
“

0, π
2

“

, les
fonctions sin et cos sont dérivables et cos ne s’annule pas. Par conséquent, la fonction tan est dérivable sur
“

0, π
2

“

, et on a
tan1 “

sin1 cos´ cos1 sin

cos2
“

cos2 ` sin2

cos2
“

1

cos2
“ 1 ` tan2 .

Ceci entraîne que tan est strictement croissante sur
“

0, π
2

“

. Comme par ailleurs on a tan1p0q “ 1, on peut en
déduire le graphe de tan par imparité et π-périodicité.

– On a tanx “ tan y ô sinx cos y “ sin y cosx ô sinx cos y´sin y cosx “ 0 ô sinpx´yq “ 0. Par conséquent,
tanx “ tan y ô x ´ y ” 0 rπs ô x ” yrπs.

Si x ı π r2πs et t “ tan x
2 , alors

cosx “
1 ´ t2

1 ` t2
, sinx “

2t

1 ` t2
, si de plus x ı π

2 rπs, tanx “
2t

1 ´ t2
.

Théorème - Paramétrisation rationnelle du cercle trigonométrique

Démonstration. On a :

cosx “ cos
´

2
x

2

¯

“ cos2
x

2
´ sin2

x

2
“ cos2

x

2

´

1 ´ tan2
x

2

¯

“
1 ´ tan2 x

2

1 ` tan2 x
2

, car cos2
x

2
“

1

1 ` tan2 x
2

.

sinx “ sin
´

2
x

2

¯

“ 2 sin
x

2
cos

x

2
“ 2 tan

x

2
cos2

x

2
“

2 tan x
2

1 ` tan2 x
2

.

On en déduit directement la formule de tanx, qui peut par ailleurs se déduire de la formule de duplication.
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4. Fonctions circulaires réciproques

On sait que la fonction sin n’est pas bijective sur R : si y P r´1, 1s, l’équation y “ sinx admet une infinité de solutions
sur R. En revanche, cette équation n’admet qu’une solution sur l’intervalle

“

´π
2 ,

π
2

‰

. Ceci va fournir une réciproque de
la fonction sin restreinte à l’intervalle

“

´π
2 ,

π
2

‰

. Nous ferons une construction similaire pour les fonctions cos et tan.

y

arcsin y

On sait que : – la fonction sin est continue et strictement croissante sur l’intervalle
“

´π
2 ,

π
2

‰

,
– la fonction cos est continue et strictement décroissante sur l’intervalle r0, πs,
– la fonction tan est continue et strictement croissante sur l’intervalle

‰

´π
2 ,

π
2

“

,

Le théorème de la bijection entraîne alors que :

– la fonction sin est bijective de
“

´π
2 ,

π
2

‰

sur sin
`“

´π
2 ,

π
2

‰˘

“ r´1, 1s, on note arcsin sa bijection réciproque,

– la fonction cos est bijective de r0, πs sur cospr0, πsq “ r´1, 1s, on note arccos sa bijection réciproque.

– la fonction tan est bijective de
‰

´π
2 ,

π
2

“

sur tan
`‰

´π
2 ,

π
2

“˘

“s ´ 8,`8r, on note arctan sa bijection réciproque.

Ainsi,
arcsin : r´1, 1s Ñ

”

´
π

2
,
π

2

ı

, arccos : r´1, 1s Ñ r0, πs , arctan : R Ñ

ı

´
π

2
,
π

2

”

.

Les fonctions arcsin, arccos et arctan ne sont pas les bijections réciproques des fonctions sin, cos et tan, dont on
sait bien sûr qu’elles ne sont pas bijectives sur leur ensemble de définition.

Remarque. On a :

@x P r´1, 1s, sinparcsinxq “ x, @x P r´π
2 ,

π
2 s, arcsinpsinxq “ x,

@x P r´1, 1s, cosparccosxq “ x, @x P r0, πs, arccospcosxq “ x,

@x P R, tanparctanxq “ x, @x Ps ´ π
2 ,

π
2 r, arctanptanxq “ x.

En revanche on n’a pas en général arcsinpsinxq “ x. Par exemple, arcsinpsinπq “ 0. On retiendra les équivalences
suivantes.

x “ arcsin a ô

"

sinx “ a
x P

“

´ π
2 ,

π
2

‰ x “ arccos a ô

"

cosx “ a
x P r0, πs

x “ arctan a ô

"

tanx “ a
x P

‰

´ π
2 ,

π
2

“

Il convient de bien connaître les valeurs remarquables ci-dessous, qui proviennent directement des valeurs remarquables
pour les fonctions circulaires, et qu’on peut retrouver aisément à l’aide du cercle trigonométrique.

x ´1 ´
?
3
2 ´ 1?

2
´ 1

2 0 1
2

1?
2

?
3
2 1

arcsinx ´π
2 ´π

3 ´π
4 ´π

6 0 π
6

π
4

π
3

π
2

arccosx π 5π
6

3π
4

2π
3

π
2

π
3

π
4

π
6 0

x ´
?
3 ´1 ´ 1?

3
0 1?

3
1

?
3

arctanx ´π
3 ´π

4 ´π
6 0 π

6
π
4

π
3

Exemple. Montrons que arctan 1
2 ` arctan 1

3 “ π
4 .
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On note θ “ arctan 1
2 ` arctan 1

3 . Comme 1
2 ,

1
3 P r0, 1r, on a arctan 1

2 , arctan
1
3 P r0, π

4 r, donc θ P r0, π
2 r, et

tan θ “
tanparctan 1

2 q ` tanparctan 1
3 q

1 ´ tanparctan 1
2 q tanparctan 1

3 q
“

1
2 ` 1

3

1 ´ 1
2

1
3

“ 1 “ tan
π

4
.

Ainsi, θ ” π
4 rπs. Comme θ P r0, πr, on en déduit que θ “ π

4 .

Soit x P r´1, 1s. On a
cosparcsinxq “ sinparccosxq “

a

1 ´ x2.

Théorème

Démonstration. On a cos2parcsinxq “ 1 ´ sin2parcsinxq “ 1 ´ x2. En composant par la fonction racine, on obtient
que | cosparcsinxq| “

?
1 ´ x2. Comme arcsinx P

“

´π
2 ,

π
2

‰

, on a cosparcsinxq ě 0, ce qui conclut. La deuxième égalité
est analogue.

Exemples. – Pour tout x Ps ´ 1, 1r, tanparcsinxq “
sinparcsinxq

cosparcsinxq
“

x
?
1 ´ x2

.

– Pour tout x P r´1, 1szt0u, tanparccosxq “
sinparccosxq

cosparccosxq
“

?
1 ´ x2

x
.

La fonction arcsin est strictement croissante, impaire sur r´1, 1s, dérivable sur s ´ 1, 1r, et pour tout x Ps ´ 1, 1r,

arcsin1pxq “
1

?
1 ´ x2

.

Théorème - Étude de la fonction arcsin

Démonstration. La restriction de la fonction sin à l’intervalle
“

´π
2 ,

π
2

‰

étant strictement croissante, sa bijection réci-
proque arcsin l’est aussi. Comme la dérivée de sin ne s’annule pas sur I “

‰

´π
2 ,

π
2

“

, le théorème de dérivabilité de la
bijection réciproque entraîne que arcsin est dérivable sur sinpIq “s ´ 1, 1r, et

@x Ps ´ 1, 1r, arcsin1pxq “
1

sin1parcsinpxqq
“

1

cosparcsinpxqq
“

1
?
1 ´ x2

.

Montrons l’imparité : si x P r´1, 1s, on note a “ arcsinpxq, on a alors sin a “ x, donc sinp´aq “ ´x. Comme
´a P

“

´π
2 ,

π
2

‰

, on a alors ´a “ arcsinp´xq, soit ´ arcsinx “ arcsinp´xq.

La fonction arccos est strictement décroissante sur r´1, 1s, dérivable sur s ´ 1, 1r, et pour tout x Ps ´ 1, 1r,

arccos1pxq “ ´
1

?
1 ´ x2

.

Théorème - Étude de la fonction arccos

Démonstration. La preuve est analogue à celle pour la fonction arcsin.

Remarque. Pour tout x P r´1, 1s, on a arccosp´xq “ π ´ arccosx.
En effet, si on note a “ arccos x, on a cospπ ´ aq “ ´ cos a “ ´x. Ainsi, comme π ´ a P r0, πs, par définition de
arccos, on a π ´ a “ arccosp´xq, c’est-à-dire arccosp´xq “ π ´ arccos x.

Pour tout x P r´1, 1s, on a
arccosx ` arcsinx “

π

2
.

Théorème

Démonstration. Il suffit de remarquer que la fonction f : x ÞÑ arccosx` arcsinx est dérivable sur s ´ 1, 1r, de dérivée
nulle. Par conséquent, la fonction f est constante sur r´1, 1s. Comme fp0q “ π

2 , on obtient le résultat.
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Remarque. Voici une preuve alternative du résultat ci-dessus, qui n’utilise pas les dérivées des fonctions circulaires
réciproques.

On note a “ arccos x. On a sin
`

π
2

´ a
˘

“ cos a, ce qui entraîne que sin
`

π
2

´ a
˘

“ x. Comme π
2

´ a appartient à
l’intervalle r´π

2
, π
2

s, on en déduit que π
2

´ a “ arcsin x, donc π
2

“ a ` arcsin x “ arccos x ` arcsin x.

La fonction arctan est strictement croissante, impaire, dérivable sur R, et pour tout x P R,

arctan1pxq “
1

1 ` x2
.

Théorème - Étude de la fonction arctan

Démonstration. La stricte croissance provient de la stricte croissance de tan sur
“

´π
2 ,

π
2

‰

. La dérivée de tan, qui est
1 ` tan2, ne s’annule pas sur R, donc par le théorème de dérivabilité de la bijection réciproque, la fonction arctan est
dérivable sur R, et

@x P R, arctan1pxq “
1

tan1parctanxq
“

1

1 ` tan2parctanxq
“

1

1 ` x2
.

L’imparité s’obtient comme pour la fonction arcsin.

Représentations graphiques
Les propriétés des fonctions circulaires réciproques détaillées ci-dessus permettent d’obtenir les représentations gra-
phiques suivantes.

Carcsin
π
2

´π
2

Carccos

π

Carctan

π
2

´π
2

π
4

1

Pour tout x P R‹
`, on a

arctanx ` arctan
1

x
“

π

2
.

Théorème

Remarque. Comme x ÞÑ arctanx ` arctan 1
x est impaire sur R‹, on a alors : @x P R‹

´, arctanx ` arctan 1
x “ ´π

2 .

Démonstration. La fonction g : x ÞÑ arctanx ` arctan 1
x est dérivable sur R‹

`, et pour tout x P R‹
`,

g1pxq “
1

1 ` x2
´

1

x2

1

1 ` 1
x2

“ 0.

Ainsi, la fonction g est constante sur R‹
`. Comme on constate que gp1q “ 2 arctan 1 “ π

2 , on obtient bien le résultat.

Remarque. Voici une preuve alternative du résultat ci-dessus, qui n’utilise pas la dérivée de la fonction arctan.
On note a “ arctan x. On a alors

tan
`

π
2

´ a
˘

“
sinpπ

2
´ aq

cospπ
2

´ aq
“

cos a

sin a
“

1

tan a
“

1

x
.

Or comme x P R‹
`, on a a P

‰

0, π
2

“

, et π
2

´ a P
‰

0, π
2

“

. Ainsi, π
2

´ a “ arctan 1
x

, ce qui entraîne π
2

“ a ` arctan 1
x

.
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