MPSI — Mathématiques 2025-26

Chapitre 5

Trigonométrie

| Fonctions circulaires

Notation. Si « € R% et 2,y € R, on note x = y [«] ¢'il existe k € Z tel que y — = = ko

1. Définitions

Rappel.
On considére le plan muni d’un repére orthonormé (O,%’,7). Pour tout
x € R, on note M, I'unique point du cercle trigonométrique (cercle de - o = m T .
rayon 1 centré en O) tel que (v,OM, ) = x [27]. On note alors 6 4 3 2

cosx : l’abscisse de M,, cosz | 1 ﬁ Q 1 0 -1

sinz : l'ordonnée de M. 2 2 2
On définit ainsi sur R les fonction sinus et cosinus par respectivement sinz | 0 B 5 3 1 0
T — sinz et x — cosz.
Pour tout = € R\ {g + krm, ke Z}, on définit par ailleurs tanz | 0 1 1 V3 0

: V3
tang = SR
" coszx Valeurs remarquables

Théoréme - Propriétés des fonctions sinus et cosinus

i. Pour tout réel x, —1 < cosz <let —1 <sinx < 1.

7. Les fonctions cosinus et sinus sont 27-périodiques sur R.
1773 La fonction cosinus est paire et la fonction sinus est impaire.
. Pour tout réel z, cos?(x) + sin?(z) = 1.

v. Pour tout z € R\{g + km, ke Z}, 1+tan?z =

cos?x’

2. Formules de trigonométrie

Les formules suivante, dites d’addition, doivent étre connues par cceur. Elles serviront souvent de base pour retrouver
les autres formules qui suivront.

“ Théoréme - Formules d’addition

Soient a, b deux réels, si les expressions suivantes ont un sens, alors :
cos(a +b) = cosacosb —sinasinb, cos(a —b) = cosacosb +sinasinb,
sin(a + b) = sinacosb + sinbcosa, sin(a —b) = sinacosb —sinbcosa,
tana 4 tanb tana —tanb
tan(a + b)) = ——, tan(a —b) = ——.
( ) 1 —tana tanbd ( ) 1+ tana tanb

On déduit directement les formules de duplication ci-dessous, qui s’averent souvent tres utiles.

Corollaire - Formules de duplication
SiaeR,

cos(2a) = cos’a —sina = 1 —2sin®a = 2cos?a — 1,
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sin(2a) = 2sinacosa,

2tana
tan(2a) = ————, sia¢{Z + kI, ke Z}.
( ) 1— tan2 a ¢ {4 2 }
1 5(2 1 — cos(2
Remarque. On retiendra également Pécriture cos®a = 4—0%(@) et sin®a = w.

" Corollaire - Formules de linéarisation
Sia,be R, alors
cosa cosb = % (cos(a + b) + cos(a — b)),
sina sinb = % (cos(a — b) — cos(a + b)),

1
2
sina cosb = 1 (sin(a + b) + sin(a — b)).

Ces formules ne sont pas & apprendre par coeur, mais a bien comprendre, et & savoir retrouver de téte a partir des
formules d’addition. Les variantes suivantes s’averent parfois bien utiles également.

Corollaire - Formules de factorisation

Siz,y € R, alors

Tty r—y . X Yy—x
cosx + cosy = 2cos 5 cos 5 cosT —cosy = 2sin 5
. . . T+ B —
sinz + siny = 2sin g cos J

2

Les formules ci-dessous doivent pouvoir étre retrouvées tres rapidement a partir du cercle trigonométrique.

" Théoreme - Symétrie

Pour tout z € R,
cos(m +x) = —cosxz, cos(m—x)= —cosz,
sin(r + x) = —sinz, sin(m — z) = sin(x), z
cos (g +x) = —sinz, cos (g fx) =sinz,
sin (g+x) = cosz, sin (g,x = cosx

Démonstration. Ces formules peuvent étre montrées directement en utilisant les formules d’addition des fonctions cos
et sin. 0

Théoréme - Résolution d’équations trigonométriques

Siz,y € R, alors .
cosx =cosy ssi x=y[2r] ou z=—y [27],

sinz =siny ssi x=y [2r] ou x=w —y [27].

Remarque. Pour résoudre une équation de la forme cosx = «, ou sinz = «, ou a € R. On commence alors par essayer
d’écrire a sous la forme cosy ou siny.

Exemple. Résolution de 1'équation sin(2z) = ? sur [0, 27].

Solution. L’équation se récrit sin(2x) = sin %

T, Or

2
sin(?x)zsing < 2:02% [27] ou2xz§ [27] < xz% [7] oung [7].

Finalement, les solutions dans R sont les réels de la forme § + k7 ou § + k7, avec k € Z. Par conséquent,
les solutions dans [0, 27| sont T, T Tr 4m

6> 3" 6 3°
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3. Etude des fonctions circulaires

" Théoréme - Limites usuelles

On a . sinz . l—cosz 1
li = 1 lim = —
z—0 X z—0 2 2
Démonstration. Soit x €]0, 7[. Une comparaison de 'aire du triangle OAM,, I'aire du secteur angulaire entre A
et M, et l'aire du triangle OAB donne :
M, sin x x tan z sin
< = < , donc cosz < < 1,
2 2 2 T
o A car x > 0 et cosx > 0. Par conséquent, on a % — 1 par encadrement.
z—0
Comme pour tout z € R*, sinz — w, on a aussi 22 — 1, donc % " 1.
z—0~ T—>
SizeR* ona:
cost—1  (cosz—1)(cosz + 1) cos’z — 1 sin? x sinz\> 1 1 0
= = = = — _ ——,
x? z2(cosz + 1) x2(cosz +1)  x%(cosz + 1) x cosx +1az-0 2

Remarque. Ces résultats expriment que, au voisinage de 0, ¢ sinx “ressemble” a x,

N 2
o cosx “ressemble” a 1 — %

- Théoréme - Dérivées des fonctions sinus et cosinus

Les fonctions sin et cos sont dérivables sur R, et on a

sin’ = cos, cos’ = —sin.
Démonstration. Si v € R*, on a
sin(x + h) —sinz sinxcosh +sinhcosz —sinz  sinz(cosh — 1) + sinhcosz
h h h
. cosh—1 sinh
= hsinz 5 + CcoOST —> COST
h h h—0

car % — 0 et Cosh# — —%. Ainsi, sin est dérivable en tout point z € R*, et sin’(x) = cos .

h—0 h—0

Comme pour tout z € R, cosz = sin (g — x), la fonction cos est dérivable sur R comme fonction composée, et pour

tout z € R, cos'(z) = —sin’ (§ —z) = —cos (§ —z) = —sina. O

Graphe des fonctions cosinus et sinus On déduit alors du signe de cos et sin les variations de sin et cos, et on obtient
les graphes suivants.

(ﬁ("os

/277 - T 3 s Csin
14

Remarques.

SIE]
[\

— Comme cosz = sin(z + ) pour tout = € R, on obtient la courbe de sin a partir de celle de cos par une translation

de vecteur 77.

— Comme sinx = sin(m — 2) pour tout x € R, la courbe de sin a une symétrie d’axe =z = 5.
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Théoréme - Propriétés de la fonction tangente

— La fonction tan est impaire, m-périodique et dérivable sur R\ {g + km, ke Z}, et

1
tan’ = — = 1+ tan?.
cos
— Limites: lim = —o lim = +o0.
zo—5+ T3
— Graphe :
5 3T T T 37 5
2 2 2 2 2 2

— Equations trigonométriques : si x,y € R, alors tanz =tany < z =y [7].

Démonstration.

— La fonction tan est impaire sur 2 = R\ {% +km, ke Z} car sin est impaire et cos est impaire sur 2.
— Pourtout reR,onaze? < x+me P, et pour tout z € 7,

tan(x + ) = sin(z + ) - T _ tana.
cos(z + ) —cosz

— Les limites se déduisent des limites lim sinz =1et lim cosz =0".

I — o —
I—’z $—>2

— On peut restreindre ’étude de la fonction a lintervalle [O, %[ par mw-périodicité et imparité. Sur [O7 g[, les
fonctions sin et cos sont dérivables et cos ne s’annule pas. Par conséquent, la fonction tan est dérivable sur
[0,%[, et on a ) )
, sin’ cos — cos’ sin cos? + sin 1 9

tan’ = 5 = 3 = 5 = 1+ tan”.

cos cos cos

s

Ceci entraine que tan est strictement croissante sur [0, 5[. Comme par ailleurs on a tan’(0) = 1, on peut en
déduire le graphe de tan par imparité et m-périodicité.

— Onatanx =tany < sinazcosy = sinycosx < sinzcosy—sinycosz =0 < sin(z—y) = 0. Par conséquent,
tanz =tany < z—y=0[n] « z=y[nx]. O

Théoréme - Paramétrisation rationnelle du cercle trigonométrique

Siz #m [2n] et t = tan §, alors

cosT = ;71;, sinx = %, si de plus x # 7 [7], tanz = = Ett2'
Démonstration. On a :
COST = COs (2 g) = cos? g —sian = cos2g (1 — tan? g) = 14__::22? car cos2g = 14—;112‘;
sinx = sin (2 g) = 28111% cosg = 2tang COSQ§ = m.
On en déduit directement la formule de tan x, qui peut par ailleurs se déduire de la formule de duplication. O
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4. Fonctions circulaires réciproques

On sait que la fonction sin n’est pas bijective sur R : si y € [—1, 1], I’équation y = sin x admet une infinité de solutions
sur R. En revanche, cette équation n’admet qu’une solution sur 'intervalle [—g g] Ceci va fournir une réciproque de
la fonction sin restreinte a lintervalle [—%, g] Nous ferons une construction similaire pour les fonctions cos et tan.

arcsin y

On sait que : — la fonction sin est continue et strictement croissante sur l'intervalle [fg, g],
— la fonction cos est continue et strictement décroissante sur I'intervalle [0, 7],
— la fonction tan est continue et strictement croissante sur l'intervalle ]—g, 5 [,
Le théoreme de la bijection entraine alors que :
— la fonction sin est bijective de [—g, g] sur sin ([—g, g]) = [—1, 1], on note arcsin sa bijection réciproque,
— la fonction cos est bijective de [0, 7] sur cos([0,7]) = [—1, 1], on note arccos sa bijection réciproque.

— la fonction tan est bijective de ]fg, g[ sur tan (]fg, g[) =] — o0, +0oo[, on note arctan sa bijection réciproque.
Ainsi,
T T
arcsin : [—-1,1] — [75,5], arccos : [—1,1] — [0, 7], arctan : R — ]75,5[

/\  TLes fonctions arcsin, arccos et arctan ne sont pas les bijections réciproques des fonctions sin, cos et tan, dont on
sait bien siir qu’elles ne sont pas bijectives sur leur ensemble de définition.

Remarque. On a :

Vo e [-1,1], sin(arcsinz) = =z, Vre[-75,5], arcsin(sinz) = x,
Vo e [—1,1], cos(arccosz) = x, Vaz € [0,7], arccos(cosz) = «,
VzeR, tan(arctanz) = x, Vre]l -3, 5[, arctan(tanz) = .

/A En revanche on n’a pas en général arcsin(sinz) = z. Par exemple, arcsin(sin7) = 0. On retiendra les équivalences

suivantes.
arcsi = { Sina = a arccosa < { cosT =a arcta = { tanz = a
T = ina J 73 = a T = na P
xE[_E,a] I'E[O,ﬂ'] xE]_E,a[

Il convient de bien connaitre les valeurs remarquables ci-dessous, qui proviennent directement des valeurs remarquables
pour les fonctions circulaires, et qu’on peut retrouver aisément a ’aide du cercle trigonométrique.

arcsin x —g —% —% —% 0 % % % g
arccosx | & i Tz oz oz 0
T —/3 1 5 0 5 1 V3
arctan —g —% —% 0 % % %
Exemple. Montrons que arctan% + arctan% =71

Lycée Montesquieu 5



MPSI — Mathématiques 2025-26

On note 0 = arctan% + arctan % Comme %, % € [0,1[, on a arctan %, arctan i € [0, %[, donc 0 € [0, 5[, et

3 2
tan(arctan 1) + tan(arctan 1 141 s
tanf = ( ) T ( ‘51) = 2 131 =1 = tan-—.
1 — tan(arctan 5) tan(arctan 3) 1-353 4
Ainsi, § = 7 [r]. Comme 0 € [0, 7[, on en déduit que 6§ = 7.
[ Théoreme

Soit z € [-1,1]. On a

cos(arcsinz) = sin(arccosz) = /1 — 22,

Démonstration. On a cos?(arcsinz) = 1 — sin®(arcsinz) = 1 — 22. En composant par la fonction racine, on obtient

que | cos(arcsinz)| = v/1 — 22. Comme arcsinz € [—%, 2], on a cos(arcsinz) > 0, ce qui conclut. La deuxiéme égalité

est analogue. m
. sin(arcsin x x

Exemples. — Pour tout z €] — 1,1[, tan(arcsinz) = ( ) =

cos(arcsinz)  4/1— 22’
sin(arccos x) V1 — 2?2

- P tout —1,1\{0}, t = =
our tout = € [—1,1]\{0}, tan(arccosz) cos(arccos 1) .

" Théoréme - Etude de la fonction arcsin

La fonction arcsin est strictement croissante, impaire sur [—1, 1], dérivable sur | — 1, 1[, et pour tout x €] — 1, 1],

1

s !
arcsin’(r) = ——.
V1 —x?
Démonstration. La restriction de la fonction sin a l'intervalle [—g, g] étant strictement croissante, sa bijection réci-
proque arcsin l’est aussi. Comme la dérivée de sin ne s’annule pas sur I = ]—g, g[, le théoreme de dérivabilité de la
bijection réciproque entraine que arcsin est dérivable sur sin(/) =] — 1, 1], et
1 1 1
Vel —1,1[, arcsin’(z) = — - = . = .
=11 () sin’(arcsin(z))  cos(arcsin(z)) /1 — 22
Montrons l'imparité : si € [—1,1], on note a = arcsin(z), on a alors sina = z, donc sin(—a) = —z. Comme
—a€[—%,%], on aalors —a = arcsin(—z), soit — arcsinz = arcsin(—x). O

" Théoréme - Etude de la fonction arccos
La fonction arccos est strictement décroissante sur [—1, 1], dérivable sur | — 1, 1[, et pour tout x €] — 1, 1],

1

/
arccos' (z) = ———.
@ = -——
Démonstration. La preuve est analogue a celle pour la fonction arcsin. O

Remarque. Pour tout = € [—1, 1], on a arccos(—z) = 7 — arccos .

En effet, si on note a = arccosz, on a cos(mr —a) = —cosa = —z. Ainsi, comme 7 — a € [0, 7], par définition de
arccos, on a T — a = arccos(—x), ¢’est-a-dire arccos(—xz) = 7 — arccos .

| Théoréme

Pour tout z € [—1,1], on a T
arccosr + arcsinx = 5

Démonstration. 11 suffit de remarquer que la fonction f : x — arccosx + arcsin x est dérivable sur | — 1, 1[, de dérivée
nulle. Par conséquent, la fonction f est constante sur [—~1,1]. Comme f(0) = 7, on obtient le résultat. O
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Remarque. Voici une preuve alternative du résultat ci-dessus, qui n’utilise pas les dérivées des fonctions circulaires
réciproques.

On note a = arccosz. On a sin (g — a) = cosa, ce qui entraine que sin (% — a) = x. Comme 7 — a appartient a

l'intervalle [, 5], on en déduit que § — a = arcsinz, donc § = a + arcsinz = arccos x + arcsin z.

Théoréme - Etude de la fonction arctan
La fonction arctan est strictement croissante, impaire, dérivable sur R, et pour tout x € R,

1

aI‘Ctan/ (1') = ﬁ o
x

Démonstration. La stricte croissance provient de la stricte croissance de tan sur [—g, g] La dérivée de tan, qui est
1 + tan?, ne s’annule pas sur R, donc par le théoréme de dérivabilité de la bijection réciproque, la fonction arctan est
dérivable sur R, et

1 1 1

VxeR, arctan’(z) = = = ) O
() tan’(arctan x) 1 + tan?(arctan z) 1+ a2

L’imparité s’obtient comme pour la fonction arcsin.

Représentations graphiques

Les propriétés des fonctions circulaires réciproques détaillées ci-dessus permettent d’obtenir les représentations gra-
phiques suivantes.

% T - Cé/arcsin g ””””””””””””
(’farctan
ks
u
1
_ T (K&TCCOS _
2 s s s T 2
Théoreme
Pour tout x e R}, on a
1 T
arctanz + arctan — = —.
T 2
Remarque. Comme x — arctanx + arctan% est impaire sur R*, on a alors : Vx € R*, arctanz + arctan% = —3.

Démonstration. La fonction g : x — arctanx + arctan % est dérivable sur R, et pour tout = € R,

1 1 1

() = - = =0
9@ =30 2115

Ainsi, la fonction g est constante sur R . Comme on constate que g(1) = 2arctan1 = 7, on obtient bien le résultat. [

Remarque. Voici une preuve alternative du résultat ci-dessus, qui n’utilise pas la dérivée de la fonction arctan.

On note a = arctanz. On a alors

x sin(§ —a) cosa 1 1
tan (5 fa) = = = — = = —,
cos(§ —a) sina tana x
* ™ ™ ™ P T _ 1 : a T o_ 1
Or comme z e R} ,onaac ]0, 5[, et 5 —ae ]0, 5[. Ainsi, 5 — @ = arctan 7, ce qui entralne 5 = a + arctan .
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