MPSI — Mathématiques 2025-26

Chapitre 4

Rappels et compléments sur les
fonctions réelles

Dans tout le chapitre, E et F' désignent des parties de R.

| Généralités sur les fonctions réelles

1. Définitions

Définition - Fonction

Une fonction réelle f définie sur E est un procédé qui associe a chaque élément z € E un unique réel, noté f(z).
On note
f: F —- R

z - f(@)

On note .#(E,R) I'ensemble des fonctions réelles définies sur E.

- Size E,yeRety= f(x), on dit que y est I’image de x par f et x est un antécédent de y par f.

— Il arrive qu’une fonction réelle f soit introduite sans préciser d’ensemble de départ, on appelle alors ensemble de
définition de f lensemble des réels x tels que f(z) existe.

Remarque. Il faut bien noter qu’un élément z de E ne peut avoir f(x)
qu’une seule image (sinon la fonction f est définie de maniére ambigiie).

En revanche, un élément y de R peut avoir plusieurs antécédents.

Définition - Ensemble image
Si f e #(E,R), on appelle ensemble image de f, ou simplement image de f ensemble f(E) des images des
éléments de E par f :
f(E) = {f(z), z€ E}.

On dit que f est a valeurs dans une partie F' de R si pour tout = € E, f(z) € F, autrement dit f(E) c F.
Plus généralement, si A ¢ E, on note f(A) I'ensemble {f(z), x € A}, qu’on appelle image de A par f.

/\  Attention & ces notations qui se ressemblent : si x est un élément de E, alors f(z) est un réel, si A est un
sous-ensemble de E| alors f(A) est une partie de R.

Exemples. — L’ensemble image de la fonction exponentielle définie sur R est R : exp(R) = R%..

— L’ensemble image de la fonction In définie sur R% est R : In(R%} ) = R.

Remarque. Si f € #(E,R) vérifie f(E) c F, on dit parfois que f est a valeurs dans F. En d’autres termes, toutes
les images de f appartiennent a F.

Définition - Graphe
Si f e Z(E,R), on appelle graphe de f I’ensemble
4 = {(& f(2)), w€ B},

Dans un plan & muni d’un repére, on appelle courbe représentative de f I'ensemble € des points de & dont les
coordonnées sont de la forme (z, f(z)) avec « € E. On dit que y = f(x) est une équation de 6%.
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Remarque. Dans la pratique, on ne fera pas la différence entre le graphe d’une fonction et sa courbe représentative
dans un plan muni d’un repere orthonormal.

2. Opérations sur les fonctions

Définition - Opérations sur les fonctions
Soient f € #(E,R), ge Z(F,R), et A € R. On introduit les fonctions :
- Somme: f+g : z— f(z)+g(z) définie sur En F,
Multiplication par un réel : \f : 2 — Af(z) définie sur E,
— Produit : fg : x— f(x)g(z), définie sur En F,
— Composition : si f(F) c F (c’est-a-dire Vo € E, f(z) € F), alors la composée de f par g est définie par

gof: E — R
z — g(f(z))

Remarque. /\ En général, méme lorsqu’elles existent toutes les deux, f o g et go f ne sont pas les mémes fonctions.

Inverse et quotient Soient f,g € % (E,R).

— L’inverse de f est la composée de f par la fonction x — %, définie sur {z € E, f(x) = 0}, et notée %

— Le quotient de f par g est le produit de f et %, défini sur {z € E, g(z) = 0}, et noté 5.

Théoreme

Soient f,g € Z(E,R) et a,b € R. On note €5 et 6, les courbes représentatives de f et g dans un repere
orthonormal (O, 7, 7).

- Sig:z— f(x+a), alors €, est obtenue & partir de ¢ par translation de vecteur —a?.
—~ Sig:x— f(x)+0b, alors €, est obtenue & partir de €% par translation de vecteur bJ.
(

a

5.

~ Sig:az— f(ax) et a = 0, alors €, est obtenue a partir de €y par dilatation de direction I’axe des abscisses
et de rapport %

~ Sig:x— f(a—ux),alors 6, est obtenue & partir de € par symétrie d’axe d’équation x =

~ Sig:a— bf(x), alors €, est obtenue & partir de ¢ par dilatation de direction 'axe des ordonnées et de
rapport b.

Démonstration. Les premier et troisieme points sont traités a titre d’exemple, les autres sont laissés en exercice.

~Ona 9 = {(z,9(x), zeR} = {(z,f(z+a)), zeR} = {(y—a,f(y), yeR}
= {(yvf(y)) —a(l,O), QER}'

Ainsi, les points de la courbe %, sont obtenus a partir des points de ¢ auxquels on applique une translation de
vecteur ar.

- Ona¥, = {(z,fla—2x)), xeR} = {(y —a, f(¥), y € R}, or le symétrique du point de coordonnées (y, f(y))
par rapport a la droite d’équation x = § est le point de coordonnées (y — a, f(y)). O

On déduit directement du troisieme point le résultat suivant.

" Corollaire
Soient f € #(E,R) et a € R. On suppose que pour tout € E,onaa—z € E.

Si pour tout z € E, on a f(a —x) = f(z), alors €} est symétrique par rapport a I'axe d’équation z = §.

Exemple. Pour tout x € R, on a sin(m — x) = sinz. On en déduit alors que la courbe de la fonction sin est symétrique
par rapport a I’axe d’équation z = 7.
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3. Parité, périodicité

Définition - Parité, imparité
Soit f € Z(E,R). On suppose que pour tout z € E, —z € E.
¢ La fonction f est dite paire si

Vze E, f(-=) = f(z).
Graphiquement, la courbe représentative de f est alors symétrique \/\/\/

par rapport a I’axe des ordonnées.

o La fonction f est dite tmpaire si
Vere E, f(—x) = —f(x). N\ l
f=2) = () =
Graphiquement, la courbe représentative de f est symétrique par

rapport au point O, origine du repeére.

Remarque. Lorsqu’une fonction f définie sur E est paire ou impaire, on pourra 1’étudier sur £ n R puis en déduire
I’étude de f sur E entier par symétrie.

Exemples. — Les fonctions x — ||, cos, x — 2™ ol n est un entier pair sont paires,
— Les fonctions sin, x — z™ ou n est un entier impair sont impaires.

Définition - Fonction périodique
Soient f € Z#(E,R) et T € R%. On suppose que pour tout z € E, x+7T € E et x —T € E. On dit que f est

T-périodique si
Vee E, flx+T)=f(x).

On dit que f est périodique s’il existe T € R tel que f est T-périodique.

Exemple. Les fonctions cos et sin, définies sur R sont 27-périodiques. La fonction tan définie sur R\{F + k7, k € Z}
est m-périodique.

Remarque. Si f € .%(E,R) est T-périodique,

— pour tout z € E et tout n€ Z, on a f(z +nT) = f(x),

— la courbe représentative de f dans un plan muni d’un repére orthonormal (O, 7, 7) est invariante par translation
de vecteur nT 7 pour tout n € Z,

— on pourra se contenter d’étudier la fonction f sur E n[a,a + T[, ot a € E.
La fonction f est alors également nT-périodique pour tout n € N*, on ne parle donc pas de la période mais d’une
période de f. On prendra toutefois I’habitude de rechercher la plus petite période possible.

Exemple. La fonction f : x +— sin(3x) est 2w-périodique, mais elle est aussi 2?”—pélriodique.

En effet, pour tout € R, on a sin (3 (z + 2ZF)) = sin(3z + 27) = sin(3z), c’est-a-dire f (z + ZF) = f(=).

4. Fonction majorée, minorée, bornée

Définition - Fonction majorée, minorée, bornée
Soit f une fonction réelle définie sur F.
* On dit que f est majorée si: IM e R, Vx e E, f(x) < M.
*x On dit que f est minorée si: Ime R, Vx e E, f(z) = m.

* On dit que f est bornée si f est minorée et majorée.

Remarques.
— La fonction f est majorée sur E (resp. minorée, resp. bornée) si et seulement si son ensemble image f(FE) est

2

majoré (resp. minoré, resp. borné)
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— La fonction f est bornée sur E si et seulement si |f| est majorée i.e.
IM >0, Yz e E, |f(x)] < M.

En effet, f(E) est bornée si et seulement s’il existe M € R tel que pour tout y € f(E), |y| < M, c’est-a-dire que
pour tout z € E, |f(z)| < M.

Exemples. — La fonction exp est minorée par 0 mais n’est pas majorée.

— La fonction cos est bornée.

Définition - Extrema
Soient f € Z(E,R) et 29 € E. On dit que f admet en g :

— un minimum si pour tout z € E, f(x) = f(xo), on note alors f(xg) = mig f(z),
e

— un mazimum si pour tout z € E, f(z) < f(xo), on note alors f(xg) = max f(2),
e

— un extremum si f admet un minimum ou un maximum en xg.

/\ Une fonction, méme bornée, n’admet pas toujours de minimum ou de maximum. Par exemple, la fonction exp est
bornée sur R_, mais n’admet pas de minimum sur R_.

5. Monotonie

Définition - Fonctions monotones, strictement monotones
Soit f une fonction réelle définie sur une partie £ de R.

* On dit que ¢ [ est constante sur E si JaeR, Ve E, f( ) = a,
o f est croissante sur F si Ve,ye B, <y = f(z) < f(y),
o f est décroissante sur E si Ve,ye E, <y = f(z) = f(y),
o f est strictement croissante sur E si Ve,ye E, z <y = f(z) < f(y),
o f est strictement décroissante sur Esi Vax,ye E, z <y = f(z)> f(y).

* On dit que f est monotone sur E si f est croissante ou décroissante sur E tout entier. On parle de stricte
monotonie lorsque la croissance ou la décroissance est stricte.

Remarque. Une fonction constante sur R est a la fois croissante et décroissante, mais n’est pas strictement monotone.

Exemple. La fonction f : x — 2?2 est strictement croissante sur R .

Soient x,y € Ry . Supposons que z < y. On a alors y%? — 22 = (y—z)(x+x)>0cary—x>0et 0 <z <y donc

x4y > 0. Ainsi, 2 < y°.

' Théoréme

Si f est strictement croissante sur E et x,y € F, on a l’équivalence © <y < f(z) < f(y). Si f est strictement
décroissante, on a z <y < f(x) = f(y).

Démonstration. Supposons que f est croissante sur E, et fixons x,y € E. L’implication © < y = f(x) < f(y) est
donnée par la définition de la croissance de f. La seconde implication : f(z) < f(y) = x < y n’est autre que la
contraposée de I'implication = > y = f(x) > f(y), qui est vraie d’apres la stricte croissance de f. O

Théoréme - Monotonie et opérations
— Somme. Soient f,g€ ZF(E,R). Si f et g ont méme monotonie, alors f + g a la méme monotonie que f et
g. Si de plus 'une des deux est strictement monotone, alors f + g est strictement monotone.

— Produit. Soient f,g € #(E,R). Si f et g ont méme monotonie et sont positives, alors fg a la méme
monotonie que f et g.

— Composition. Soient f € #(E,R) et g € Z(F,R) avec f(E) c F.

7. Si f et g sont de méme monotonie, alors g o f est croissante,

7. Si f et g sont de monotonies opposées, alors g o f est décroissante.
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Démonstration. Montrons un des cas du résultat de composition, tous les autres sont laissés en exercice. Supposons
que f et g sont décroissantes, et montrons que g o f est croissante.

Soient z,y € F tels que x < y. Par décroissance de f, on a alors f(x) = f(y). Par décroissance de g désormais, ceci
entraine que g(f(z)) < g(f(y)), c’est-a-dire (go f)(x) < (go f)(y). On a donc bien montré que go f est croissante. [J

. 2 L . . .
Exemples. La fonction  — e™ est décroissante sur R. La fonction  — Inz + x est strictement croissante sur R .

Remarque. L’utilisation des résultats du théoréme ci-dessus permet parfois d’obtenir la monotonie d’une fonction
sans avoir besoin de la dériver.

6. Bijectivité

Définition - Bijection
On dit que f € Z(E,R) est bijective de E sur F' (ou est une bijection de E sur F') si tout élément de F' admet

un unique antécédent dans E par f :
VyeF, Az e E, f(z)=y.

En d’autres termes, pour tout y € F, 'équation y = f(z), d’inconnue z, admet une unique solution dans E.

11 11

|
1

1 1

Graphes de fonctions bijectives de [0,1] sur [0, 1]

Exemple. La fonction f : x — 2x est bijective de R sur R. En effet, si y € R, ’équation y = 2z admet une unique

solution, donnée par = = %.

Définition - Réciproque
Si fe Z(E,F), on appelle réciproque de f toute fonction g € & (F, E) telle que :

Vre E, g(f(z)) =z, et VyeF, f(g(y) =v-

" Théoréme - Bijection et réciproque o
£

Une fonction f est bijective de E sur F si et seulement si elle admet une &
O f—1

fonction réciproque.

Dans ce cas, cette réciproque est unique, et notée f~'. Pour tous x € F et
ye F, ona _a
y=f(x) & z=[1"(y).

Géométriquement, la courbe représentative de f et celle de f~! sont symé-
triques par rapport a la droite d’équation y = x.

Démonstration.

— Nous montrerons ’équivalence entre le caractére bijectif et I’existence de réciproque dans un cadre plus général
ultérieurement.
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— Le deuxiéme point peut étre vu en remarquant que si (z,y) € R on a :

()€Y = y=f(z) = z2=f"'y) < (y,2) €Y. O

Remarque. Si f est bijective de E sur F, alors f~1 est bijective de F sur E, et (f~1)"" = f.
Exemple. La fonction f: 2z — 1+ e™" est bijective de R sur son ensemble image f(R) =]1, +oo].
En effet, si y €]1, +00[, on a pour tout z € R,

z - 1

y=1+e" & e =y—-1 & —z=h(y-1) & z=In I
y—

Ainsi, ’équation y = f(x) a une unique solution dans R, et f est bijective. Par ailleurs, sa bijection réciproque est

. 1. 1
donnée par 7 :x— In 71

 Théoréme - Bijectivité et monotonie

Si f e #(E,R) est bijective de E sur F et monotone sur E, alors elle est strictement monotone et sa bijection
réciproque f~! a la méme stricte monotonie.

Démonstration. Si f est croissante sur E et x,y € E vérifient x < y, alors on a déja f(z) < f(y) par croissance de f.
Comme f(z) = f(y) par bijectivité de f, on a donc f(z) < f(y). Ceci assure la stricte croissance de f.

Soient maintenant z,y € F. Si f~1(x) = f~1(y), alors par croissance de f, on a f(f~1(z)) = f(f'(y)), soit > y.
Par contraposée, on a alors z <y = f~!(z) < f~1(y), ce qui assure que f~! est strictement croissante. O

Il Continuité, dérivabilité

Les théoremes de cette partie seront démontrés ultérieurement, dans les chapitres qui leur seront respectivement
consacreés.

1. Continuité

Définition - Fonction continue
Soient f € #(E,R) et a € E. On dit que f est continue en a € E si f(x) — f(a).

Si f est continue en tout point de F, on dit que f est continue sur F. L’ensemble des fonctions continues sur F
est noté ¢ (E,R), ou simplement & (FE).

Théoreme - Théoréme des valeurs intermédiaires

Soient f une fonction continue sur un intervalle I et a,b € I avec
<
asb Ho
Pour tout réel y compris entre f(a) et f(b), il existe (au moins) un y
réel x € |a, b] tel que
[, 0] flx)=uy. f(a)

Autrement dit, 'image par f de Uintervalle I est un intervalle.

Dans le cas ou la fonction considérée est strictement monotone, il y a unicité dans I’énoncé ci-dessus.

" Théoréme - Théoréme de la bijection

Soit f une fonction continue définie sur un intervalle I. Si f est strictement monotone sur I, alors f est une
bijection de I sur lintervalle J = f(I).

De plus, la bijection réciproque f~! est continue, strictement monotone sur J, de méme monotonie que f.
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La monotonie permet d’exprimer facilement ’ensemble image d’un intervalle par f. Voici quelques exemples : soient
a,be R avec a < b,

— si f est continue, strictement croissante sur [a, b], alors f est bijective de [a,b] sur f(I) = [f(a), f(b)],

— si f est continue, strictement croissante sur |a, b, alors f est bijective de ]a,b] sur f(I) =]lim,+ f, f(b)],

— si f est continue, strictement décroissante sur |a, b[, alors f est bijective de ]a,b[ sur f(I) =]lim,- f, lim,+ f[.
Exemple. La fonction f : x — sinx est continue et strictement croissante sur 'intervalle [—g, z

la bijection, elle est donc bijective de [—g, %] sur son ensemble image [f (—%) f (g)] =[-1

]. Par le théoréme de

Fonctions racines n-eme

— Si n € N est pair : la fonction f, :  — z™ est continue et strictement
croissante sur I'intervalle R, = [0, +0o[. Par le théoréme de la bijection, elle
est donc bijective de R, sur son ensemble image f(R,) = R,. Sa bijection
réciproque est appelée fonction racine n-¢éme, et est notée {/-.

Dans le cas ot n = 2, la fonction ¥+ n’est autre que la fonction racine carrée.

— Sin € N est impair : la fonction f : © — z™ est continue et strictement
croissante sur R. Par le théoreme de la bijection, elle est donc bijective de R
sur son ensemble image f(R) = R. Sa bijection réciproque est encore appelée
fonction racine n-éme, et est notée /..

2. Dérivabilité

Dans cette partie, E désigne un ensemble de R et f une fonction de E dans R.

Définition - Taux d’accroissement

Soit a € I. On appelle tauz d’accroissement de f en ala fonction 7, : E\{a} — R M(z
définie par :
x) — f(a
g TE = @) M(a)
xT—a

Graphiquement, 7,(z) est le coefficient directeur de la droite passant par les
points M (a) et M (z) de coordonnées respectives (a, f(a)) et (x, f(x)). a x

Définition - Dérivabilité en un point, sur un ensemble
On dit que f est dérivable en a € F si son taux d’accroissement en a 7, admet une limite finie lorsque * — a.
Dans ce cas, on note cette limite f/(a), et on appelle nombre dérivé de f en a.

Si f est dérivable en tout point d’un ensemble E, on dit que f est dérivable sur F, et on appelle dérivée de f sur
E la fonction f : z — f’(x) définie sur E. On note Z(E,R) l'ensemble des fonctions dérivables sur E.

A La notation f(x)’ est proscrite : f(z) est un nombre réel, et non pas une fonction. Lorsqu’on voudra faire apparaitre

la variable de dérivation, on pourra en revanche écrire L (f(z)) au lieu de f’.

Exemples.

1. La fonction f : x — 2 est dérivable en tout point a € R, et f'(a) = 2a.

_ 2 _ 2 _ —
Si z € R\{a}, on a f(z) — /(a) =2 ¢ - (@—a)(z+a) = x+a, donc lim M = 2a.
r+a r—a r—a z—a T —a
2. La fonction inverse f: 2+ 1 est dérivable en tout a € R*, et f'(a) = — ;.
1 _ 1 _ _
Si z € R\{a}, on a f@)—fla) _s=a _ o=z _ _i, donc lim @) = f@) _ _i_
T —a T —a za(x —a) za r—a T —a a2
3. La fonction racine carrée f : x — 4/ est dérivable en tout point a € R%.
SizeRi\{a}, ona fz) = /(a) = Ve - a ! donc lim f@) = fla) b

v —a Vo —Va) o +va) ~ Vatal e w—a W

En revanche, la fonction racine carrée n’est pas dérivable en 0.
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SizeR},ona f@) = F0) = N
z—0 T

Définition - Tangente a €} en a
Soit f une fonction dérivable en a € I. La droite d’équation y = f'(a)(x — a) + f(a) est appelée tangente a la
courbe de f en a.

Remarque. Graphiquement, la tangente a la courbe de f en un point a est la droite de pente f’(a) passant par le
point M(a).

“ Théoréme - Dérivabilité et continuité

| Soient f une fonction définie sur I et a € I. Si f est dérivable en a, alors f est continue en a.

Démonstration. Pour x = a, on note e(x) = W — f’(a). On sait alors que (x) — 0. Ainsi,
r—a

f@@) = fla) = (f'(a) +£(@))(x —a) — 0.

T—a

On a donc bien f(x) — f(a), et f est continue en a. O

A La réciproque est fausse. Par exemple, la fonction x — /7 est continue en 0, mais n’est pas dérivable en ce point.

Théoréme - Opérations sur les fonctions dérivables

- Sif,g€ 2(E,R) et XA € R, alors les fonctions Af, f +g, fg et, si g ne s’annule pas sur E, 5, sont dérivables
sur F, et on a alors

AN =X, (f+9) =Ff+d, (f9) = flg+fd, (g) = fgg;afg-

- Si fe 2(E,R), ge Z2(F,R) et f(FE) c F, alors g o f est dérivable sur E, et
(gof) = f'x(dof)

— Si I est un intervalle et f € 2(I,R) est une bijection de I sur J et f’ ne s’annule pas sur I, alors ! est
dérivable sur U'intervalle J, et 1

-1\ _
(f ) - f/of—l'

Exemples.

— Si f: 2 — 2%, on sait que pour tout z € RY, f'(z) = 2z. Par conséquent, la dérivée de f ne s’annule pas sur

R*, et on en déduit que la fonction /-, qui est la bijection réciproque de f est dérivable sur f(R%) = R} . Par
ailleurs, pour tout x € R%,

’ 1 1 . d 1
(f7) (@) = @) - 2w autrement dit, -

~ Si f e Z(I,R) est a valeurs dans R% , i.e. f(I) < R%, alors la fonction h = +/f est dérivable sur I, et
f/
2VF

h' =

Théoréme - Dérivée et monotonie
Soient I un intervalle de R et f € Z(I,R).

o La fonction f est croissante sur I si et seulement si Vx € I, f'(z) = 0.
¢ Si f’ est positive sur I et ne s’annule qu’en un nombre fini de points, alors f est strictement croissante sur
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I. En particulier, si Yz € I, f/(x) > 0, alors f est strictement croissante sur I.

Remarques.

— Il est crucial que I soit un intervalle : par exemple, la fonction = — % a une dérivée strictement négative sur R*,
mais n’est pas monotone sur R*.

— Les énoncés sont analogues dans le cas de fonctions décroissantes, ou strictement décroissantes.

— On a en fait la caractérisation : f est strictement croissante sur I si et seulement si f” est positive sur I et n’est
identiquement nulle sur aucun intervalle de I non réduit a un point.

Exemple. La fonction f = z +— 22 est dérivable sur R, et pour tout z € R, f/(x) = 322. Ainsi f’ est positive sur R et
ne s’annule qu’en 0. On en déduit que f est strictement croissante sur R.

I1l  Fonctions usuelles

1. Logarithme népérien et exponentielle

Définition - Logarithme népérien
On définit la fonction logarithme népérien, notée In sur R , par

X
1
Inx =J —dt, pour tout z e RY.
1t

Ainsi définie, la fonction In est I'unique primitive de la fonction x — %, qui vaut 0 en 1 (nous montrerons ce résultat
plus tard). On en déduit que :

— la dérivée de In sur R est la fonction z — %, sa dérivée seconde est la fonction x — —#,

— la fonction In est strictement croissante et concave sur R7 .

" Théoréme - Propriété fondamentale du logarithme népérien

Pour tous z,y € R, In(zy) = Inz + Iny.

Démonstration. On fixe y € R%, et on considere la fonction ¢ : & — In(zy) — Inz — Iny définie sur R . Il s’agit donc
de montrer que ¢ est la fonction nulle. On observe que ¢ est dérivable sur R, et que pour tout x € R},

Ainsi, la fonction ¢ est constante sur R, égale a ¢(1) = 0. Par conséquent, pour tout y € R%, pour tout x € R%, on
aln(zy) =lnz +Iny. O

" Théoréme - Propriétés de In
i. Six € R et n €N, alors In(2") = nln(z). A~
. Si z € R%, alors ln% = —Inx.

iii. Siz,ye RY, alors ln% =Inzx —Iny.

iv. Limites en 0% et +00: lim Inz = —o0, et lim Inz = +oo.
r—0t Tr—+00

v. Pour tout z €] — 1, +oof, In(1+ z) < .
Pour tout z €]0, +oo[, In(z) <z —1.

vi. Croissances comparées : lim B2 — (0, et lim zlnz = 0.
z—+00 T z—0+t
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Démonstration. Les propriétés i. a iii. découlent directement du théoreme précédent.

iv. Par stricte croissance de la fonction In, on a In(2) > In(1) = 0. Par conséquent, In(2") = nln(2) — +oo lorsque
n — +00. Ainsi, la fonction croissante In est non majorée, ce qui entraine que In(z) — +o0.
xr—

+®
Par ailleurs, comme £ — +o0, on a In (l) — +00. Par conséquent, Inx = —In (l) — —00.
xr xr x
r—0t z—0t z—0+

v. Par concavité, la courbe de la la fonction In est en-dessous de sa tangente en 1, qui a pour équation y = x — 1.
vi. Pour tout x € [1,+0[, on a
Inz _ 2yx 2

Inz = In (\/52) = 2Invz < 2(VZ—1) < 2V, donc 0 < —% < il 0.
x T NG T zo+0

nz

ops o . In i
par encadrement. Comme % — 400, on a alors par composition de limite ——= — 0,donczlnz — 0. O
z—0 = z—0t z—0+

La fonction In étant strictement croissante et continue sur R’ , elle réalise une bijection de R} sur son image, qui est
R tout entier d’apres les limites de In en 0 et en +00. En particulier, 1 a un unique antécédent, qu’on note e :

Ine = 1.

Définition - Fonction exponentielle

On définit la fonction exponentielle, notée exp, comme la bijection réciproque de la fonction logarithme népérien.
I s’agit donc d’une fonction bijective de R dans R*, et on a alors

exp(lnz) = x pour tout x € R, In(exp z) = x pour tout = € R.

Remarque. On a exp(0) = exp(Inl) = 1.

" Théoréme - Propriétés de exp

1. La fonction exp est dérivable sur R, et exp’ = exp.

Par ailleurs, exp est strictement croissante et convexe sur R.

ii. Siz,y € R, alors exp(z + y) = exp(x) exp(y).

iti. Si x € R et n € Z, alors exp(nz) = exp(x)™.

Bn
iv. Limites en +00 :  lim exp(x) =0, et lim exp(z) = +o0. _// /
r——00 r——+00

v. Pour tout z € R, exp(z) = x + 1. e €

=0.

vi. Croissance comparée : lim —Z—
r—+00 Cxp(f)

Démonstration.

i. La dérivée de la fonction In ne s’annule pas sur R , donc sa bijection réciproque exp est dérivable sur In(R% ) = R,

et sa dérivée est donnée par 1 1
!/
exp = ——— = — = exp.
In’ (exp) %

Ainsi, exp’ = exp est strictement positive sur R, et exp est strictement croissante. Par ailleurs, exp

Les autres propriétés sont déduites des propriétés de la fonction In et sont laissées en exercice. O

2. Fonctions puissances réelles

Siz e R+* et n € Z, on sait que 2 = exp(In(z™)) = exp(nlnzx). Nous allons nous baser sur cette égalité pour donner
un sens a la notion de puissance non entiere.
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Définition - Fonctions puissances réelles
Soit a € R. On définit la fonction puissance d’exposant a sur R* par :

fo: R, — R
xz  — exp(aln(x))

On convient de noter z* = exp(alnx).

Remarques.

— D’apres ce qui précede, si n € Z, f, coincident avec la définition de la puissance. La notation x® ne présente
donc pas d’ambiguité.

— On retiendra que, lorsque « ¢ Z, x® n’est qu'une notation pour exp(alnz).

— Pour tout x € R, on a e” = exp(zlne) = exp(z). Par conséquent, on peut noter e* au lieu de exp(z).

— A Lorsque « ¢ Z, la notation z® n’est valable que si x € R%..

Les puissances réelles vérifient les mémes propriétés que les puissances entieres.

" Théoréme - Propriétés des puissances réelles
Soient z,y € R} et a, e R. On a :

@ «
x T 75 _
(xy)* = z%y?, <y> = —ya, %P = x‘”’g, — =z '8, (mo‘)ﬁ = z%B.

Démonstration. Simple application des propriétés de exp et In. O

. 1\n i
Remarque. Sine N* on a (m n) = x pour tout x € R%. Par conséquent,

1

Ve eR,, ¥z = zv.

N . RS . 1 . . .. .
AN D’aprés ce qui précede, les fonctions z — x= et /- coincident sur R, mais il faut bien noter qu’elles ne sont pas

o R 1 o - . .
définies sur les mémes ensembles : z — x= n’est définie que sur R’ , alors que {/- est définie sur R si n est pair,
et sur R entier si n est impair.

" Théoréme - Dérivée des fonctions puissances réelles

La fonction f, est dérivable sur R* et f/(z) = az®~! pour tout z € RY.

Démonstration. La fonction f, est dérivable comme composée car In est dérivable sur R et exp est dérivable sur R.

. . * / _ o, alhnhzr _ o, .a a—1
Par ailleurs, pour tout x € R%, f/(z) = Se = 22% = az® " O

Etude des fonctions puissances réelles

— fa est croissante si a > 0, décroissante si o < 0, 5

— fa est concave pour « € [0,1], et convexe sinon,

— Limites :
o 0 sia>0 a 400 sia>0
Tz — . et z& —> .
z—0+ | +o0 sia<0 z—4o0 | 0 sia<0
Dans le cas a > 0, f, est donc prolongeable par continuité en 0, o 1
en posant f,(0) = 0.
— Sia > 0, la courbe de f, admet :
— une tangente verticale en 0 si o < 1,
Cy

— une tangente horizontale en 0 si o > 1.
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Théoréme - Croissances comparées

Soient o, 3,y € RY..

Inz)® zB
lim ) _ 0, lim |Inz|*z? =0, lim — =0, lim |z|%e’® = 0.
s>+ B 20+ x40 T Z>—00

Démonstration. Nous montrons seulement le premier résultat, les autres s’en déduisant aisément. On a

() - () - 6 ()

— 400 car % > 0, et on sait que by __, 0, donc on obtient le résultat par composition de limites. O
T—+00 Y y—+ow0

B
@

Or x

3. Fonctions hyperboliques

Définition - Cosinus, sinus, tangente hyperboliques
On définit sur R les fonctions :

e’ +e "
— cosinus hyperbolique ch:z— —

— sinus hyperbolique sh: z — —
shz

— tangente hyperbolique th:z+— —.
chz

Remarques.

— La fonction ch est strictement positive sur R. La fonction sh est négative sur R_, et positive sur R;.
— Pour tout x e R, e =chx +shz et e =chax —shux.

 Théoréme - Propriétés des fonctions hyperboliques

— Pour tout z € R, ch’z —sh’z = 1.

— Les fonctions ch, sh et th sont dérivables sur R, et

ch’ = sh, sh’ = ch, th' = — = 1—th®.

Démonstration.

~ Onach?z—sh?z = (chaz +sha)(che —shz) = e®e™® = 1.
— La dérivabilité des fonctions ch, sh et th provient de la dérivabilité de la fonction exp, et les formules de sh’ et

ch’ s’obtiennent directement. Par ailleurs, si = € R,
sh’(x) ch(z) — ch’(x) sh(x) ch?(x) — sh?(z)

/ _ _ — 1 e () = 1—
thi{z) = ch?(x) B ch?(z)  ch¥(a)’ t @) =1

Représentation graphique

— La fonction ch est paire, les fonctions sh et th sont impaires.
— La fonction ch est strictement décroissante sur R_, strictement croissante sur R, . Les fonctions sh et th sont
strictement croissantes sur R.

— Ona lim chx =400, lim shx=-—o0, lim shx =40, lim thx=—-1, et lim thx =1.
r— 100 T——00 x—+00 T——00 x—+00
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(gch %s h

w %h

Exercice 1. Montrer que pour tous réels a, b,
o ch(a +b) = ch(a)ch(b) + sh(a)sh(b), sh(a+b) = sh(a)ch(b) + ch(a)sh(b),

th(a) + th(b)

° th(a+b) = T )

Lycée Montesquieu 13



