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Chapitre 4

Rappels et compléments sur les
fonctions réelles

Dans tout le chapitre, E et F désignent des parties de R.

I Généralités sur les fonctions réelles
1. Définitions

Une fonction réelle f définie sur E est un procédé qui associe à chaque élément x P E un unique réel, noté fpxq.
On note

f : E Ñ R
x ÞÑ fpxq

On note F pE,Rq l’ensemble des fonctions réelles définies sur E.

Définition - Fonction

– Si x P E, y P R et y “ fpxq, on dit que y est l’image de x par f et x est un antécédent de y par f .
– Il arrive qu’une fonction réelle f soit introduite sans préciser d’ensemble de départ, on appelle alors ensemble de

définition de f l’ensemble des réels x tels que fpxq existe.

Remarque. Il faut bien noter qu’un élément x de E ne peut avoir
qu’une seule image (sinon la fonction f est définie de manière ambigüe).
En revanche, un élément y de R peut avoir plusieurs antécédents.

fpxq

x x1

Si f P F pE,Rq, on appelle ensemble image de f , ou simplement image de f l’ensemble fpEq des images des
éléments de E par f :

fpEq “ tfpxq, x P Eu .

On dit que f est à valeurs dans une partie F de R si pour tout x P E, fpxq P F , autrement dit fpEq Ă F .
Plus généralement, si A Ă E, on note fpAq l’ensemble tfpxq, x P Au, qu’on appelle image de A par f .

Définition - Ensemble image

Attention à ces notations qui se ressemblent : si x est un élément de E, alors fpxq est un réel, si A est un
sous-ensemble de E, alors fpAq est une partie de R.

Exemples. – L’ensemble image de la fonction exponentielle définie sur R est R‹
` : exppRq “ R‹

`.
– L’ensemble image de la fonction ln définie sur R‹

` est R : lnpR‹
`q “ R.

Remarque. Si f P F pE,Rq vérifie fpEq Ă F , on dit parfois que f est à valeurs dans F . En d’autres termes, toutes
les images de f appartiennent à F .

Si f P F pE,Rq, on appelle graphe de f l’ensemble

Gf “ tpx, fpxqq, x P Eu.

Dans un plan P muni d’un repère, on appelle courbe représentative de f l’ensemble Cf des points de P dont les
coordonnées sont de la forme px, fpxqq avec x P E. On dit que y “ fpxq est une équation de Cf .

Définition - Graphe
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Remarque. Dans la pratique, on ne fera pas la différence entre le graphe d’une fonction et sa courbe représentative
dans un plan muni d’un repère orthonormal.

2. Opérations sur les fonctions

Soient f P F pE,Rq, g P F pF,Rq, et λ P R. On introduit les fonctions :

– Somme : f ` g : x ÞÑ fpxq ` gpxq définie sur E X F ,
– Multiplication par un réel : λf : x ÞÑ λfpxq définie sur E,
– Produit : fg : x ÞÑ fpxq gpxq, définie sur E X F ,
– Composition : si fpEq Ă F (c’est-à-dire @x P E, fpxq P F ), alors la composée de f par g est définie par

g ˝ f : E Ñ R
x ÞÑ gpfpxqq

Définition - Opérations sur les fonctions

Remarque. En général, même lorsqu’elles existent toutes les deux, f ˝ g et g ˝ f ne sont pas les mêmes fonctions.

Inverse et quotient Soient f, g P F pE,Rq.

– L’inverse de f est la composée de f par la fonction x ÞÑ 1
x , définie sur tx P E, fpxq ­“ 0u, et notée 1

f .

– Le quotient de f par g est le produit de f et 1
g , défini sur tx P E, gpxq ­“ 0u, et noté f

g .

Soient f, g P F pE,Rq et a, b P R. On note Cf et Cg les courbes représentatives de f et g dans un repère
orthonormal pO, ı⃗, ȷ⃗q.

– Si g : x ÞÑ fpx ` aq, alors Cg est obtenue à partir de Cf par translation de vecteur ´a⃗ı.
– Si g : x ÞÑ fpxq ` b, alors Cg est obtenue à partir de Cf par translation de vecteur bȷ⃗.
– Si g : x ÞÑ fpa ´ xq, alors Cg est obtenue à partir de Cf par symétrie d’axe d’équation x “ a

2 .
– Si g : x ÞÑ fpaxq et a ­“ 0, alors Cg est obtenue à partir de Cf par dilatation de direction l’axe des abscisses

et de rapport 1
a .

– Si g : x ÞÑ bfpxq, alors Cg est obtenue à partir de Cf par dilatation de direction l’axe des ordonnées et de
rapport b.

Théorème

Démonstration. Les premier et troisième points sont traités à titre d’exemple, les autres sont laissés en exercice.

– On a Gg “ tpx, gpxqq, x P Ru “ tpx, fpx ` aqq, x P Ru “ tpy ´ a, fpyqq, y P Ru

“ tpy, fpyqq ´ ap1, 0q, y P Ru.

Ainsi, les points de la courbe Cg sont obtenus à partir des points de Cf auxquels on applique une translation de
vecteur a⃗ı.

– On a Gg “ tpx, fpa ´ xqq, x P Ru “ tpy ´ a, fpyqq, y P Ru, or le symétrique du point de coordonnées py, fpyqq

par rapport à la droite d’équation x “ a
2 est le point de coordonnées py ´ a, fpyqq.

On déduit directement du troisième point le résultat suivant.

Soient f P F pE,Rq et a P R. On suppose que pour tout x P E, on a a ´ x P E.

Si pour tout x P E, on a fpa ´ xq “ fpxq, alors Cf est symétrique par rapport à l’axe d’équation x “ a
2 .

Corollaire

Exemple. Pour tout x P R, on a sinpπ ´xq “ sinx. On en déduit alors que la courbe de la fonction sin est symétrique
par rapport à l’axe d’équation x “ π

2 .
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3. Parité, périodicité

Soit f P F pE,Rq. On suppose que pour tout x P E, ´x P E.
˛ La fonction f est dite paire si

@x P E, fp´xq “ fpxq.

Graphiquement, la courbe représentative de f est alors symétrique
par rapport à l’axe des ordonnées.

˛ La fonction f est dite impaire si

@x P E, fp´xq “ ´fpxq.

Graphiquement, la courbe représentative de f est symétrique par
rapport au point O, origine du repère.

O

Définition - Parité, imparité

Remarque. Lorsqu’une fonction f définie sur E est paire ou impaire, on pourra l’étudier sur E X R` puis en déduire
l’étude de f sur E entier par symétrie.

Exemples. – Les fonctions x ÞÑ |x|, cos, x ÞÑ xn où n est un entier pair sont paires,
– Les fonctions sin, x ÞÑ xn où n est un entier impair sont impaires.

Soient f P F pE,Rq et T P R‹
`. On suppose que pour tout x P E, x ` T P E et x ´ T P E. On dit que f est

T -périodique si
@x P E, fpx ` T q “ fpxq.

On dit que f est périodique s’il existe T P R‹
` tel que f est T -périodique.

Définition - Fonction périodique

Exemple. Les fonctions cos et sin, définies sur R sont 2π-périodiques. La fonction tan définie sur Rztπ
2 ` kπ, k P Zu

est π-périodique.

Remarque. Si f P F pE,Rq est T -périodique,

– pour tout x P E et tout n P Z, on a fpx ` nT q “ fpxq,
– la courbe représentative de f dans un plan muni d’un repère orthonormal pO, ı⃗, ȷ⃗q est invariante par translation

de vecteur nT ı⃗ pour tout n P Z,
– on pourra se contenter d’étudier la fonction f sur E X ra, a ` T r, où a P E.

La fonction f est alors également nT -périodique pour tout n P N‹, on ne parle donc pas de la période mais d’une
période de f . On prendra toutefois l’habitude de rechercher la plus petite période possible.

Exemple. La fonction f : x ÞÑ sinp3xq est 2π-périodique, mais elle est aussi 2π
3 -périodique.

En effet, pour tout x P R, on a sin
`

3
`

x ` 2π
3

˘˘

“ sinp3x ` 2πq “ sinp3xq, c’est-à-dire f
`

x ` 2π
3

˘

“ fpxq.

4. Fonction majorée, minorée, bornée

Soit f une fonction réelle définie sur E.

‹ On dit que f est majorée si : DM P R, @x P E, fpxq ď M .
‹ On dit que f est minorée si : Dm P R, @x P E, fpxq ě m.
‹ On dit que f est bornée si f est minorée et majorée.

Définition - Fonction majorée, minorée, bornée

Remarques.

– La fonction f est majorée sur E (resp. minorée, resp. bornée) si et seulement si son ensemble image fpEq est
majoré (resp. minoré, resp. borné).
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– La fonction f est bornée sur E si et seulement si |f | est majorée i.e.

DM ě 0, @x P E, |fpxq| ď M.

En effet, fpEq est bornée si et seulement s’il existe M P R tel que pour tout y P fpEq, |y| ď M , c’est-à-dire que
pour tout x P E, |fpxq| ď M .

Exemples. – La fonction exp est minorée par 0 mais n’est pas majorée.
– La fonction cos est bornée.

Soient f P F pE,Rq et x0 P E. On dit que f admet en x0 :

– un minimum si pour tout x P E, fpxq ě fpx0q, on note alors fpx0q “ min
xPE

fpxq,

– un maximum si pour tout x P E, fpxq ď fpx0q, on note alors fpx0q “ max
xPE

fpxq,

– un extremum si f admet un minimum ou un maximum en x0.

Définition - Extrema

Une fonction, même bornée, n’admet pas toujours de minimum ou de maximum. Par exemple, la fonction exp est
bornée sur R´, mais n’admet pas de minimum sur R´.

5. Monotonie

Soit f une fonction réelle définie sur une partie E de R.

‹ On dit que ˛ f est constante sur E si Da P R, @x P E, fpxq “ a,
˛ f est croissante sur E si @x, y P E, x ď y ñ fpxq ď fpyq,
˛ f est décroissante sur E si @x, y P E, x ď y ñ fpxq ě fpyq,
˛ f est strictement croissante sur E si @x, y P E, x ă y ñ fpxq ă fpyq,
˛ f est strictement décroissante sur E si @x, y P E, x ă y ñ fpxq ą fpyq.

‹ On dit que f est monotone sur E si f est croissante ou décroissante sur E tout entier. On parle de stricte
monotonie lorsque la croissance ou la décroissance est stricte.

Définition - Fonctions monotones, strictement monotones

Remarque. Une fonction constante sur R est à la fois croissante et décroissante, mais n’est pas strictement monotone.

Exemple. La fonction f : x ÞÑ x2 est strictement croissante sur R`.
Soient x, y P R`. Supposons que x ă y. On a alors y2 ´ x2 “ py ´ xqpx ` xq ą 0 car y ´ x ą 0 et 0 ď x ă y donc
x ` y ą 0. Ainsi, x2 ă y2.

Si f est strictement croissante sur E et x, y P E, on a l’équivalence x ď y ô fpxq ď fpyq. Si f est strictement
décroissante, on a x ď y ô fpxq ě fpyq.

Théorème

Démonstration. Supposons que f est croissante sur E, et fixons x, y P E. L’implication x ď y ñ fpxq ď fpyq est
donnée par la définition de la croissance de f . La seconde implication : fpxq ď fpyq ñ x ď y n’est autre que la
contraposée de l’implication x ą y ñ fpxq ą fpyq, qui est vraie d’après la stricte croissance de f .

– Somme. Soient f, g P F pE,Rq. Si f et g ont même monotonie, alors f ` g a la même monotonie que f et
g. Si de plus l’une des deux est strictement monotone, alors f ` g est strictement monotone.

– Produit. Soient f, g P F pE,Rq. Si f et g ont même monotonie et sont positives, alors fg a la même
monotonie que f et g.

– Composition. Soient f P F pE,Rq et g P F pF,Rq avec fpEq Ă F .

i. Si f et g sont de même monotonie, alors g ˝ f est croissante,
ii. Si f et g sont de monotonies opposées, alors g ˝ f est décroissante.

Théorème - Monotonie et opérations
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Démonstration. Montrons un des cas du résultat de composition, tous les autres sont laissés en exercice. Supposons
que f et g sont décroissantes, et montrons que g ˝ f est croissante.

Soient x, y P E tels que x ď y. Par décroissance de f , on a alors fpxq ě fpyq. Par décroissance de g désormais, ceci
entraîne que gpfpxqq ď gpfpyqq, c’est-à-dire pg ˝ fqpxq ď pg ˝ fqpyq. On a donc bien montré que g ˝ f est croissante.

Exemples. La fonction x ÞÑ e´x3 est décroissante sur R. La fonction x ÞÑ lnx ` x est strictement croissante sur R‹
`.

Remarque. L’utilisation des résultats du théorème ci-dessus permet parfois d’obtenir la monotonie d’une fonction
sans avoir besoin de la dériver.

6. Bijectivité

On dit que f P F pE,Rq est bijective de E sur F (ou est une bijection de E sur F ) si tout élément de F admet
un unique antécédent dans E par f :

@y P F, D!x P E, fpxq “ y.

En d’autres termes, pour tout y P F , l’équation y “ fpxq, d’inconnue x, admet une unique solution dans E.

Définition - Bijection

1

1

1

1

Graphes de fonctions bijectives de r0, 1s sur r0, 1s

Exemple. La fonction f : x ÞÑ 2x est bijective de R sur R. En effet, si y P R, l’équation y “ 2x admet une unique
solution, donnée par x “

y
2 .

Si f P F pE,F q, on appelle réciproque de f toute fonction g P F pF,Eq telle que :

@x P E, gpfpxqq “ x, et @y P F, fpgpyqq “ y.

Définition - Réciproque

Une fonction f est bijective de E sur F si et seulement si elle admet une
fonction réciproque.
Dans ce cas, cette réciproque est unique, et notée f´1. Pour tous x P E et
y P F , on a

y “ fpxq ô x “ f´1pyq.

Géométriquement, la courbe représentative de f et celle de f´1 sont symé-
triques par rapport à la droite d’équation y “ x.

Cf

Cf´1

Théorème - Bijection et réciproque

Démonstration.

– Nous montrerons l’équivalence entre le caractère bijectif et l’existence de réciproque dans un cadre plus général
ultérieurement.
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– Le deuxième point peut être vu en remarquant que si px, yq P R2, on a :

px, yq P Gf ô y “ fpxq ô x “ f´1pyq ô py, xq P Gf´1 .

Remarque. Si f est bijective de E sur F , alors f´1 est bijective de F sur E, et pf´1q
´1

“ f .

Exemple. La fonction f : x ÞÑ 1 ` e´x est bijective de R sur son ensemble image fpRq “s1,`8r.
En effet, si y Ps1,`8r, on a pour tout x P R,

y “ 1 ` e´x
ô e´x

“ y ´ 1 ô ´x “ lnpy ´ 1q ô x “ ln
1

y ´ 1
.

Ainsi, l’équation y “ fpxq a une unique solution dans R, et f est bijective. Par ailleurs, sa bijection réciproque est
donnée par f´1 : x ÞÑ ln 1

y´1
.

Si f P F pE,Rq est bijective de E sur F et monotone sur E, alors elle est strictement monotone et sa bijection
réciproque f´1 a la même stricte monotonie.

Théorème - Bijectivité et monotonie

Démonstration. Si f est croissante sur E et x, y P E vérifient x ă y, alors on a déjà fpxq ď fpyq par croissance de f .
Comme fpxq ­“ fpyq par bijectivité de f , on a donc fpxq ă fpyq. Ceci assure la stricte croissance de f .

Soient maintenant x, y P F . Si f´1pxq ě f´1pyq, alors par croissance de f , on a fpf´1pxqq ě fpf´1pyqq, soit x ě y.
Par contraposée, on a alors x ă y ñ f´1pxq ă f´1pyq, ce qui assure que f´1 est strictement croissante.

II Continuité, dérivabilité
Les théorèmes de cette partie seront démontrés ultérieurement, dans les chapitres qui leur seront respectivement
consacrés.

1. Continuité

Soient f P F pE,Rq et a P E. On dit que f est continue en a P E si fpxq ÝÑ
xÑa

fpaq.

Si f est continue en tout point de E, on dit que f est continue sur E. L’ensemble des fonctions continues sur E
est noté C pE,Rq, ou simplement C pEq.

Définition - Fonction continue

Soient f une fonction continue sur un intervalle I et a, b P I avec
a ď b.
Pour tout réel y compris entre fpaq et fpbq, il existe (au moins) un
réel x P ra, bs tel que

fpxq “ y.

Autrement dit, l’image par f de l’intervalle I est un intervalle. a

fpaq

b

fpbq

y

x

Théorème - Théorème des valeurs intermédiaires

Dans le cas où la fonction considérée est strictement monotone, il y a unicité dans l’énoncé ci-dessus.

Soit f une fonction continue définie sur un intervalle I. Si f est strictement monotone sur I, alors f est une
bijection de I sur l’intervalle J “ fpIq.
De plus, la bijection réciproque f´1 est continue, strictement monotone sur J , de même monotonie que f .

Théorème - Théorème de la bijection
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La monotonie permet d’exprimer facilement l’ensemble image d’un intervalle par f . Voici quelques exemples : soient
a, b P R avec a ă b,

– si f est continue, strictement croissante sur ra, bs, alors f est bijective de ra, bs sur fpIq “ rfpaq, fpbqs,
– si f est continue, strictement croissante sur sa, bs, alors f est bijective de sa, bs sur fpIq “s lima` f, fpbqs,
– si f est continue, strictement décroissante sur sa, br, alors f est bijective de sa, br sur fpIq “s limb´ f, lima` f r.

Exemple. La fonction f : x ÞÑ sinx est continue et strictement croissante sur l’intervalle
“

´π
2 ,

π
2

‰

. Par le théorème de
la bijection, elle est donc bijective de

“

´π
2 ,

π
2

‰

sur son ensemble image
“

f
`

´π
2

˘

, f
`

π
2

˘‰

“ r´1, 1s.

Fonctions racines n-ème

– Si n P N est pair : la fonction fn : x ÞÑ xn est continue et strictement
croissante sur l’intervalle R` “ r0,`8r. Par le théorème de la bijection, elle
est donc bijective de R` sur son ensemble image fpR`q “ R`. Sa bijection
réciproque est appelée fonction racine n-ème, et est notée n

?
¨.

Dans le cas où n “ 2, la fonction 2
?

¨ n’est autre que la fonction racine carrée.

Cfn

C n
?

¨

– Si n P N est impair : la fonction f : x ÞÑ xn est continue et strictement
croissante sur R. Par le théorème de la bijection, elle est donc bijective de R
sur son ensemble image fpRq “ R. Sa bijection réciproque est encore appelée
fonction racine n-ème, et est notée n

?
¨.

Cfn

C n
?

¨

2. Dérivabilité

Dans cette partie, E désigne un ensemble de R et f une fonction de E dans R.

Soit a P I. On appelle taux d’accroissement de f en a la fonction τa : Eztau Ñ R
définie par :

τa : x ÞÑ
fpxq ´ fpaq

x ´ a
.

Graphiquement, τapxq est le coefficient directeur de la droite passant par les
points Mpaq et Mpxq de coordonnées respectives pa, fpaqq et px, fpxqq. a x

Mpaq

Mpxq

Définition - Taux d’accroissement

On dit que f est dérivable en a P E si son taux d’accroissement en a τa admet une limite finie lorsque x Ñ a.
Dans ce cas, on note cette limite f 1paq, et on l’appelle nombre dérivé de f en a.

Si f est dérivable en tout point d’un ensemble E, on dit que f est dérivable sur E, et on appelle dérivée de f sur
E la fonction f : x ÞÑ f 1pxq définie sur E. On note DpE,Rq l’ensemble des fonctions dérivables sur E.

Définition - Dérivabilité en un point, sur un ensemble

La notation fpxq1 est proscrite : fpxq est un nombre réel, et non pas une fonction. Lorsqu’on voudra faire apparaître
la variable de dérivation, on pourra en revanche écrire d

dx pfpxqq au lieu de f 1.

Exemples.

1. La fonction f : x ÞÑ x2 est dérivable en tout point a P R, et f 1paq “ 2a.

Si x P Rztau, on a fpxq ´ fpaq

x ` a
“

x2 ´ a2

x ´ a
“

px ´ aqpx ` aq

x ´ a
“ x ` a, donc lim

xÑa

fpxq ´ fpaq

x ´ a
“ 2a.

2. La fonction inverse f : x ÞÑ 1
x est dérivable en tout a P R‹, et f 1paq “ ´ 1

a2 .

Si x P Rztau, on a fpxq ´ fpaq

x ´ a
“

1
x

´ 1
a

x ´ a
“

a ´ x

xa px ´ aq
“ ´

1

xa
, donc lim

xÑa

fpxq ´ fpaq

x ´ a
“ ´

1

a2
.

3. La fonction racine carrée f : x ÞÑ
?
x est dérivable en tout point a P R‹

`.

Si x P R`ztau, on a fpxq ´ fpaq

x ´ a
“

?
x ´

?
a

p
?
x ´

?
aqp

?
x `

?
aq

“
1

?
x `

?
a

, donc lim
xÑa

fpxq ´ fpaq

x ´ a
“

1

2
?
a

.

En revanche, la fonction racine carrée n’est pas dérivable en 0.
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Si x P R‹
`, on a fpxq ´ fp0q

x ´ 0
“

?
x

x
“

1
?
x

, donc lim
xÑ0`

fpxq ´ fp0q

x ´ 0
“ `8.

Soit f une fonction dérivable en a P I. La droite d’équation y “ f 1paqpx ´ aq ` fpaq est appelée tangente à la
courbe de f en a.

Définition - Tangente à Cf en a

Remarque. Graphiquement, la tangente à la courbe de f en un point a est la droite de pente f 1paq passant par le
point Mpaq.

Soient f une fonction définie sur I et a P I. Si f est dérivable en a, alors f est continue en a.
Théorème - Dérivabilité et continuité

Démonstration. Pour x ­“ a, on note εpxq “
fpxq´fpaq

x´a ´ f 1paq. On sait alors que εpxq ÝÑ
xÑa

0. Ainsi,

fpxq ´ fpaq “ pf 1paq ` εpxqqpx ´ aq ÝÑ
xÑa

0.

On a donc bien fpxq ÝÑ
xÑa

fpaq, et f est continue en a.

La réciproque est fausse. Par exemple, la fonction x ÞÑ
?
x est continue en 0, mais n’est pas dérivable en ce point.

– Si f, g P DpE,Rq et λ P R, alors les fonctions λf , f ` g, fg et, si g ne s’annule pas sur E, f
g , sont dérivables

sur E, et on a alors

pλfq1 “ λf 1, pf ` gq1 “ f 1 ` g1, pfgq1 “ f 1g ` fg1,

ˆ

f

g

˙1

“
f 1g ´ fg1

g2
.

– Si f P DpE,Rq, g P DpF,Rq et fpEq Ă F , alors g ˝ f est dérivable sur E, et

pg ˝ fq1 “ f 1 ˆ pg1 ˝ fq.

– Si I est un intervalle et f P DpI,Rq est une bijection de I sur J et f 1 ne s’annule pas sur I, alors f´1 est
dérivable sur l’intervalle J , et

`

f´1
˘1

“
1

f 1 ˝ f´1
.

Théorème - Opérations sur les fonctions dérivables

Exemples.

– Si f : x ÞÑ x2, on sait que pour tout x P R‹
`, f 1pxq “ 2x. Par conséquent, la dérivée de f ne s’annule pas sur

R‹
`, et on en déduit que la fonction

?
¨, qui est la bijection réciproque de f est dérivable sur fpR‹

`q “ R‹
`. Par

ailleurs, pour tout x P R‹
`,

`

f´1
˘1

pxq “
1

f 1pf´1pxqq
“

1

2f´1pxq
, autrement dit, d

dx
p
?
xq “

1

2
?
x
.

– Si f P F pI,Rq est à valeurs dans R‹
`, i.e. fpIq Ă R‹

`, alors la fonction h “
?
f est dérivable sur I, et

h1 “
f 1

2
?
f
.

Soient I un intervalle de R et f P DpI,Rq.

˛ La fonction f est croissante sur I si et seulement si @x P I, f 1pxq ě 0.
˛ Si f 1 est positive sur I et ne s’annule qu’en un nombre fini de points, alors f est strictement croissante sur

Théorème - Dérivée et monotonie

Lycée Montesquieu 8
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I. En particulier, si @x P I, f 1pxq ą 0, alors f est strictement croissante sur I.

Remarques.

– Il est crucial que I soit un intervalle : par exemple, la fonction x ÞÑ 1
x a une dérivée strictement négative sur R‹,

mais n’est pas monotone sur R‹.
– Les énoncés sont analogues dans le cas de fonctions décroissantes, ou strictement décroissantes.
– On a en fait la caractérisation : f est strictement croissante sur I si et seulement si f 1 est positive sur I et n’est

identiquement nulle sur aucun intervalle de I non réduit à un point.

Exemple. La fonction f “ x ÞÑ x3 est dérivable sur R, et pour tout x P R, f 1pxq “ 3x2. Ainsi f 1 est positive sur R et
ne s’annule qu’en 0. On en déduit que f est strictement croissante sur R.

III Fonctions usuelles
1. Logarithme népérien et exponentielle

On définit la fonction logarithme népérien, notée ln sur R‹
`, par

lnx “

ż x

1

1

t
dt, pour tout x P R‹

`.

Définition - Logarithme népérien

Ainsi définie, la fonction ln est l’unique primitive de la fonction x ÞÑ 1
x , qui vaut 0 en 1 (nous montrerons ce résultat

plus tard). On en déduit que :

– la dérivée de ln sur R‹
` est la fonction x ÞÑ 1

x , sa dérivée seconde est la fonction x ÞÑ ´ 1
x2 ,

– la fonction ln est strictement croissante et concave sur R‹
`.

Pour tous x, y P R‹
`, lnpxyq “ lnx ` ln y.

Théorème - Propriété fondamentale du logarithme népérien

Démonstration. On fixe y P R‹
`, et on considère la fonction φ : x ÞÑ lnpxyq ´ lnx ´ ln y définie sur R‹

`. Il s’agit donc
de montrer que φ est la fonction nulle. On observe que φ est dérivable sur R‹

`, et que pour tout x P R‹
`,

φ1pxq “
y

xy
´

1

x
“ 0.

Ainsi, la fonction φ est constante sur R‹
`, égale à φp1q “ 0. Par conséquent, pour tout y P R‹

`, pour tout x P R‹
`, on

a lnpxyq “ lnx ` ln y.

i. Si x P R‹
` et n P N, alors lnpxnq “ n lnpxq.

ii. Si x P R‹
`, alors ln 1

x “ ´ lnx.

iii. Si x, y P R‹
`, alors ln x

y “ lnx ´ ln y.

iv. Limites en 0` et `8 : lim
xÑ0`

lnx “ ´8, et lim
xÑ`8

lnx “ `8.

v. Pour tout x Ps ´ 1,`8r, lnp1 ` xq ď x.
Pour tout x Ps0,`8r, lnpxq ď x ´ 1.

vi. Croissances comparées : lim
xÑ`8

ln x
x “ 0, et lim

xÑ0`
x lnx “ 0.

y
“
x

´
1

Cln

1

Théorème - Propriétés de ln
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Démonstration. Les propriétés i. à iii. découlent directement du théorème précédent.

iv. Par stricte croissance de la fonction ln, on a lnp2q ą lnp1q “ 0. Par conséquent, lnp2nq “ n lnp2q Ñ `8 lorsque
n Ñ `8. Ainsi, la fonction croissante ln est non majorée, ce qui entraîne que lnpxq ÝÑ

xÑ`8
`8.

Par ailleurs, comme 1
x ÝÑ

xÑ0`
`8, on a ln

`

1
x

˘

ÝÑ
xÑ0`

`8. Par conséquent, lnx “ ´ ln
`

1
x

˘

ÝÑ
xÑ0`

´8.

v. Par concavité, la courbe de la la fonction ln est en-dessous de sa tangente en 1, qui a pour équation y “ x ´ 1.
vi. Pour tout x P r1,`8r, on a

lnx “ ln
´?

x
2
¯

“ 2 ln
?
x ď 2p

?
x ´ 1q ď 2

?
x, donc 0 ď

lnx

x
ď

2
?
x

x
“

2
?
x

et lnx

x
ÝÑ

xÑ`8
0.

par encadrement. Comme 1
x ÝÑ

xÑ0`
`8, on a alors par composition de limite ´

ln 1
x

1
x

ÝÑ
xÑ0`

0, donc x lnx ÝÑ
xÑ0`

0.

La fonction ln étant strictement croissante et continue sur R‹
`, elle réalise une bijection de R‹

` sur son image, qui est
R tout entier d’après les limites de ln en 0 et en `8. En particulier, 1 a un unique antécédent, qu’on note e :

ln e “ 1.

On définit la fonction exponentielle, notée exp, comme la bijection réciproque de la fonction logarithme népérien.
Il s’agit donc d’une fonction bijective de R dans R‹

`, et on a alors

expplnxq “ x pour tout x P R‹
`, lnpexpxq “ x pour tout x P R.

Définition - Fonction exponentielle

Remarque. On a expp0q “ exppln 1q “ 1.

i. La fonction exp est dérivable sur R, et exp1 “ exp .

Par ailleurs, exp est strictement croissante et convexe sur R.

ii. Si x, y P R, alors exppx ` yq “ exppxq exppyq.

iii. Si x P R et n P Z, alors exppnxq “ exppxqn.

iv. Limites en ˘8 : lim
xÑ´8

exppxq “ 0, et lim
xÑ`8

exppxq “ `8.

v. Pour tout x P R, exppxq ě x ` 1.

vi. Croissance comparée : lim
xÑ`8

x
exppxq

“ 0.

Cln

Cexp

1 e

Théorème - Propriétés de exp

Démonstration.

i. La dérivée de la fonction ln ne s’annule pas sur R‹
`, donc sa bijection réciproque exp est dérivable sur lnpR‹

`q “ R,
et sa dérivée est donnée par

exp1 “
1

ln1
pexpq

“
1
1

exp

“ exp .

Ainsi, exp1 “ exp est strictement positive sur R, et exp est strictement croissante. Par ailleurs, exp

Les autres propriétés sont déduites des propriétés de la fonction ln et sont laissées en exercice.

2. Fonctions puissances réelles

Si x P R`‹ et n P Z, on sait que xn “ expplnpxnqq “ exppn lnxq. Nous allons nous baser sur cette égalité pour donner
un sens à la notion de puissance non entière.

Lycée Montesquieu 10
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Soit α P R. On définit la fonction puissance d’exposant α sur R‹
` par :

fα : R‹
` Ñ R
x ÞÑ exppα lnpxqq

On convient de noter xα “ exppα lnxq.

Définition - Fonctions puissances réelles

Remarques.

– D’après ce qui précède, si n P Z, fn coïncident avec la définition de la puissance. La notation xα ne présente
donc pas d’ambiguïté.

– On retiendra que, lorsque α R Z, xα n’est qu’une notation pour exppα lnxq.
– Pour tout x P R, on a ex “ exppx ln eq “ exppxq. Par conséquent, on peut noter ex au lieu de exppxq.
– Lorsque α R Z, la notation xα n’est valable que si x P R‹

`.

Les puissances réelles vérifient les mêmes propriétés que les puissances entières.

Soient x, y P R‹
` et α, β P R. On a :

pxyq
α

“ xαyα,

ˆ

x

y

˙α

“
xα

yα
, xαxβ “ xα`β ,

xα

xβ
“ xα´β , pxαqβ “ xαβ .

Théorème - Propriétés des puissances réelles

Démonstration. Simple application des propriétés de exp et ln.

Remarque. Si n P N‹, on a
`

x
1
n

˘n
“ x pour tout x P R‹

`. Par conséquent,

@x P R‹
`,

n
?
x “ x

1
n .

D’après ce qui précède, les fonctions x ÞÑ x
1
n et n

?
¨ coïncident sur R‹

`, mais il faut bien noter qu’elles ne sont pas
définies sur les mêmes ensembles : x ÞÑ x

1
n n’est définie que sur R‹

`, alors que n
?

¨ est définie sur R` si n est pair,
et sur R entier si n est impair.

La fonction fα est dérivable sur R‹
` et f 1

αpxq “ αxα´1 pour tout x P R‹
`.

Théorème - Dérivée des fonctions puissances réelles

Démonstration. La fonction fα est dérivable comme composée car ln est dérivable sur R‹
` et exp est dérivable sur R.

Par ailleurs, pour tout x P R‹
`, f 1

αpxq “ α
x eα ln x “ α

xx
α “ αxα´1.

Étude des fonctions puissances réelles
– fα est croissante si α ą 0, décroissante si α ă 0,

– fα est concave pour α P r0, 1s, et convexe sinon,

– Limites :

xα ÝÑ
xÑ0`

"

0 si α ą 0
`8 si α ă 0

et xα ÝÑ
xÑ`8

"

`8 si α ą 0
0 si α ă 0

Dans le cas α ą 0, fα est donc prolongeable par continuité en 0,
en posant fαp0q “ 0.

– Si α ą 0, la courbe de fα admet :
– une tangente verticale en 0 si α ă 1,
– une tangente horizontale en 0 si α ą 1.

Cf1

Cf 1
2

Cf 5
2

Cf´ 1
2

Cf´ 5
2
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Soient α, β, γ P R‹
`.

lim
xÑ`8

plnxqα

xβ
“ 0, lim

xÑ0`
| lnx|

α
xβ “ 0, lim

xÑ`8

xβ

eγx
“ 0, lim

xÑ´8
|x|βeγx “ 0.

Théorème - Croissances comparées

Démonstration. Nous montrons seulement le premier résultat, les autres s’en déduisant aisément. On a

plnxqα

xβ
“

ˆ

lnx

x
β
α

˙α

“

˜

α
β ln

`

x
β
α

˘

x
β
α

¸α

“

ˆ

α

β

˙α
˜

ln
`

x
β
α

˘

x
β
α

¸α

.

Or x
β
α ÝÑ

xÑ`8
`8 car α

β ą 0, et on sait que ln y
y ÝÑ

yÑ`8
0, donc on obtient le résultat par composition de limites.

3. Fonctions hyperboliques

On définit sur R les fonctions :

– cosinus hyperbolique ch : x ÞÑ
ex ` e´x

2
,

– sinus hyperbolique sh : x ÞÑ
ex ´ e´x

2
,

– tangente hyperbolique th : x ÞÑ
shx

chx
.

Définition - Cosinus, sinus, tangente hyperboliques

Remarques.

– La fonction ch est strictement positive sur R. La fonction sh est négative sur R´, et positive sur R`.
– Pour tout x P R, ex “ chx ` shx et e´x “ chx ´ shx.

– Pour tout x P R, ch2 x ´ sh2 x “ 1.
– Les fonctions ch, sh et th sont dérivables sur R, et

ch1
“ sh, sh1

“ ch, th1
“

1

ch2
“ 1 ´ th2 .

Théorème - Propriétés des fonctions hyperboliques

Démonstration.

– On a ch2 x ´ sh2 x “ pchx ` shxqpchx ´ shxq “ ex e´x “ 1.
– La dérivabilité des fonctions ch, sh et th provient de la dérivabilité de la fonction exp, et les formules de sh1 et
ch1 s’obtiennent directement. Par ailleurs, si x P R,

th1
pxq “

sh1
pxq chpxq ´ ch1

pxq shpxq

ch2pxq
“

ch2pxq ´ sh2pxq

ch2pxq
“

1

ch2pxq
, et th1

pxq “ 1´
sh2pxq

ch2pxq
“ 1´ th2pxq.

Représentation graphique

– La fonction ch est paire, les fonctions sh et th sont impaires.
– La fonction ch est strictement décroissante sur R´, strictement croissante sur R`. Les fonctions sh et th sont

strictement croissantes sur R.
– On a lim

xÑ˘8
chx “ `8, lim

xÑ´8
shx “ ´8, lim

xÑ`8
shx “ `8, lim

xÑ´8
thx “ ´1, et lim

xÑ`8
thx “ 1.
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CshCch

Cth

Exercice 1. Montrer que pour tous réels a, b,

˛ chpa ` bq “ chpaq chpbq ` shpaq shpbq, shpa ` bq “ shpaq chpbq ` chpaq shpbq,

˛ thpa ` bq “
thpaq ` thpbq

1 ` thpaq thpbq
.
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