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Chapitre 3

Calcul algébrique dans R

|  Généralités
1. Opérations sur R

L’ensemble des réels R est muni de deux opérations, I’addition et la multiplication, qui vérifient les propriétés suivantes.

% Propriétés de I’addition et la multiplication

— Propriétés de 'addition : — commutativité : Vx,ye R, z+y = y+z,
— associativité : Vx,y,z€R, z+(y+2) = (z+y)+ 2,
— élément neutre : VreR, z+0 =
— existence d’opposé : Vx eR, z+ (—x) = 0.
— Propriétés de la multiplication : — commutativité : Vx,ye R, =z xy = y x z,
— associativité : Vr,y,ze€ R, zx (yxz) = (x xy) Xz
— élément neutre : VreR, zx1 =

— existence d’inverse dans R* : Vx e R*, x x % = 1,

— Distributivité de la multiplication par rapport a 'addition : Vz,y,2€ R, zx (y+2) = z xy+x X 2.

Plus tard, la liste de ces propriétés se résumera en : R muni de ses opérations + et x est un corps.

Théoréme - Intégrité de R

Si z,y € R, alors
2y =0 < (x=0o0uy=0).

Démonstration. Supposons que xy = 0. Si x = 0, alors on a %a:y = 0, ce qui donne y = 0. On a donc bien montré
quez =0ouy=0. O

2. Inégalités dans R

L’ensemble R est muni d’une relation dite d’ordre <, qui vérifie les propriétés suivantes.

% Propriétés de <
— Réflexivité : VreR, x <.
— Antisymétrie : Vx,yeR, (z<yety<cz
— Transitivité : Vx,y,z€ R, (x <yety<

On rappelle ci-dessous les résultats de compatibilités des inégalités avec les opérations.

" Théoréme - Compatibilité avec les opérations
Soient z,z’,y,1y’, a des réels.
— Addition d’inégalités. Six <yet s <y ,alorsz+z' <y+7vy'.
— Multiplication par un réel. Six <y, —casaeR;: a Y.
Y.

Q2

T
—casa€eR_: ax

VoA

— Multiplication d’inégalités positives. Si0 < x <y et 0 <z’ <y, alors za’ < yy'.
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| — Passage a Uinverse. Si x < y et z,y sont non nuls et de méme signe, alors %

/\ On ne peut pas soustraire les inégalités!

3
Exemple. Sixze[l,2],alors 3 <z +2<4et7<3z+4<10, donc 0 <

% Composition et inégalités

Soient I un intervalle de R, deux réels a et b dans I, et f une fonction définie sur I.

Si f est croissante sur I, alors a <b = f(a) < f(b).
= f(b).

Si f est strictement croissante sur I, alors a < b < f(a) <

Si f est décroissante sur I, alors a < b = f(a)

(b).

f
Si f est strictement décroissante sur I, alors a < b < f(a) = f(b).

Par conséquent, si f est strictement monotone sur I, alors a = b < f(a) = f(b).

A\ si f est seulement croissante sur I et a,b € I, on n’a pas en général : f(a) < f(b) = a < b. Par exemple, si f est
une fonction constante et b < a, on a f(a) < f(b) mais on n’a pas a < b.

Définition - Majorant, minorant, maximum, minimum
Soit A une partie de R. On dit que :

o M € R est un majorant de A si Vx € A, x < M, on dit alors que A est majorée,
o m € R est un minorant de A si Vx € A, x = m, on dit alors que A est minorée,
o A est bornée si elle est majorée et minorée,

o M est le mazimum de A si A est majorée par M et M € A.

o M est le minimum de A si A est minorée par m et m € A.

3. Puissances et racine carrée

Définition - Puissance
Soient x € R et n € N, on définit le réel ™ par

22=1 et z"=gxx...xx pour tout n e N*.
—_——

n fois
N —n -n 1
Pour z # 0 et n € N on définit z™" par 27" = —-
45
Remarques.  — Par convention, 0° = 1.
— En particulier, siz =0, 27! = %
Théoréme - Propriétés des puissances
Pour tous z,ye R* et n,pe Z, on a :
i. " = g" x 2P, ii. (zy)" = a™ x y", v. (z™)F = a"*P,
n n
n % x
Ty Qe w. (=) =—,
xp’ Yy y"
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Exemples. — SineN, (—1)"

{

-1
- SiaeR, (—a)" = ((-1) xa)” = (=1)" x a™.

1 si n est pair,
si n est impair.

Par ailleurs,

b
(="

Définition-théoréme - Racine carrée

Soit  un réel positif. Il existe un unique réel positif ¢ tel que t2

on le note /.

= x. On appelle ce réel la racine carrée de x et

Remarque. Siz e Ry, on a, par définition, (1/7)? = z.

" Théoréeme - Propriétés

Pour tout x,y € Ry, on a

i. VBT = v/,

Démonstration. Le résultat repose sur les propriétés des puissances :

5. siy # 0, alors \/—E
VY

T

)

i. On a (\/E\/gf = (vz)? (yy)? = wy. Comme \/z,/y € Ry, on déduit de la définition de la racine carrée que

NN

2
7. De méme, on a (ﬁ) = >

4. Valeur absolue

= % Comme

N

NG

GRJr,ona\/%:

<

O

Définition - Valeur absolue

Soit 2 € R. La valeur absolue de x est le réel, noté |z|, défini par

|17|={

—Z

siz >0,

six <O0.

Remarque. La quantité |y — x| s’interpréte géométriquement comme la distance (toujours positive) sur la droite réelle
entre = et y. En particulier, |z| s’'interpréte comme la distance de = & lorigine.

ly — x| Y| ||
} } } } }
0 T Y 0 z
" Théoréme - Propriétés de la valeur absolue
Soient x,y e Ret ae Ry. On a :
o|-a| = |al,
o |z]? = 22,
o —fol < o < Jal,
o Va? = |z
o |yl = |z||y| et si de plus y est non nul, alors = %
olz|=a & (r=aouz=—a),
olz|<a & —a<z<a,
olr—yl<a & y—a<zr<y+a. Graphe de | - |
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A On a toujours (4/z)” = x par définition de la racine carrée, mais on n’a pas toujours vz2 = x (c’est impossible
si < 0). Il est en revanche toujours vrai que Va2 = |z|.

Exercice 1. Donner, en fonction de z, une expression sans valeur absolue de la quantité |z — 3| — | + 2|.

Théoréme - Inégalité triangulaire
Siz,yeR, alors :
olztyl<lzl+yl, et |z—yl<l|z|+]yl,
olz+yl = |lz[=lyll, et |z—yl > [lz] -yl
On peut résumer ces deux inégalités par :

llz] = yl| < |z £yl < |z]+ [yl

Démonstration.
~ Comme |z +y|> = (z+y)* ona
(ll + yD? = e+ y* = (2 + 202l [yl + |y*) — (2 + 22y +3?) = 2(|Jwy| —2y),
car on a aussi z = |z| et y = |y|. Comme zy < |zy|, on en déduit que (|z| + |y[)? — |z + y|*> = 0.
En remplacant y par —y dans I'inégalité, on obtient |x — y| < |z| + | —y| = |z| + |y|.

— Par Pinégalité triangulaire, on a || = |[z+y—y| < |z+y|+|y| = |r+y|+]|y|- Ainsi, on obtient |x+y| = |z|—|y|.
En échangeant les roles de et y, on obtient aussi [z + y| > |y| — |z|. Par conséquent, |z + y| = ||z| — y||.

De méme que ci-dessus, en remplagant y par —y, on obtient |z —y| > ||z] — [y]|. O
Remarques.
— Comme on l'a vu dans la preuve, la deuxieme inégalité triangulaire se récrit :
lz+yl = [z =yl et |o+yl = |yl — |zl

~ Cas d’égalité dans I'inégalité triangulaire : on constate dans la preuve ci-dessus qu’on a P'égalité |z +y| = |z|+|y|
si et seulement si xy = |zy|, c’est-a-dire xy € R,. Autrement dit, il y a égalité dans I'inégalité triangulaire si et
seulement si z et y sont de méme signe.

On peut facilement étendre I'inégalité triangulaire au cas d’une somme de plus de deux réels.

Théoréeme - Inégalité triangulaire généralisée

Soient x1,...,2, € R.On a |z1 + ...+ x| < |21] + ... + |2n|. Autrement dit,

n n
Z Tl < Z |z
k=1 k=1

Démonstration. La preuve se fait par récurrence, et est laissée en exercice. O

Théoréme - Caractérisation d’une partie bornée

Une partie A de R est bornée si et seulement s’il existe un réel K tel que pour tout = € A, |z| < K.

Démonstration.

— Si A est bornée, alors il existe des réels m, M € R tels que pour tout x € A, m < x < M. On pose alors
K = max(M,—m). Si z € A, alors soit |z| = z, donc |z] < M < K, soit 2] = —z < —m < K. Par conséquent,
ona |z| < K.

— S’ existe K € R tel que pour tout z € A, |z| < K, alors A est minorée par —K et majorée par K donc A est
bornée. O
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5. Partie entiére

Définition-théoréme - Partie entiére

Soit = € R. Il existe un unique entier relatif n € Z tel que

n<x<n+l.
Cet entier est appelé la partie entiére de x et est noté |x|. '\
—
T
n—1 n n+1 n+2 —
On a alOI‘S 5 - | *—— | | | 5
1 1 2 3 4

o |z <z <|x|+1,
ox—1<|z] <z

On appelle par ailleurs partie fractionnaire de x le réel x — |x|.

Remarques.

— Sine€Z, alors |[n| =n.
— Si x € R, alors |z] est le plus grand entier de Z inférieur & x.

Exemples. Ona [2|=1et |-2|=-2.

Exemple. Soit x € R. Montrons que pour tout n € Z, on a |z + n| = |z| + n.

Onalz] <z <|z]+1, donc |z]+n < z+n < |z]+n+ 1 Comme x| +n € Z, ceci garantit que
|z + n| = |z| + n.

Théoréme - Croissance de la partie entiére

La fonction partie entiere est croissante sur R.

Démonstration. Soient z,y € R tels que < y. Montrons que |z]| < |y]. On a
lz] <z <y < |yl +1L

On déduit de l'inégalité |z| < |y| + 1 et du fait que |z| et |y| sont des entiers que |z| < |y]. O

Exemple. Pour tout z € R, on a 2|z| < |2z].
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