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Chapitre 2

Sommes et produits

On désigne par K I'ensemble des nombres réels ou complexes.

I Sommes et produits

1. Le symbole };

Notation - Somme

notée >’ a;.
iel

n

k=m

© Soient un entier n et ay,...,a, € K. On note
n n
2 ar la somme des nombres ay,...,a, : Z ar = a1 +as+ -+ ap.
k=1 k=1

Plus généralement, si m,n sont des entiers tels que m < n, on note >, ar = am + Gmi1 + -+ + an.

o Si I est une partie finie de N et (a;);e; une famille de K par I, la somme des éléments de cette famille est

Remarques.

n
— L’indice d’une somme est muet (la somme ne dépend pas du choix de l'indice) : Y. ap =
k=1

M=

K2

a; = a1 +...+ay.
1

n
— Par convention, la somme vide est nulle : > a; = 0. En particulier, si m > n, alors > aj = 0.

kea k=m
n
Exemples. o Sigek, 1+q+q2+-~+q"=2qk.
k=0 "
o SineN", 1+32 45+ -+ (2n+1)> = Y (2k+1)°.
k=1
n
Remarques. —Sim,n e N avec m < n, alors la somme > a; comprend n —m + 1 termes.
k=m

n n
—Onaalors > 1=mn—m+1, et plus généralement, pour tout a € K, >, a=(n—-m+1)a.

k=m

Les propriétés suivantes proviennent directement des propriétés de I’addition dans K.

k=m

Théoreme - Propriétés de la somme

Soient n € N*, ay,...,a,,b1,...,b,, A € K, et un entier m tel que m <n

n n

Z(ak-i-bk): Zak+2bk, EAak:)\Ealﬁ et
k=1 k=1 k k=1 k

=1 =1

n
/\ On ne peut pas simplifier 'expression Y abg.
k=1

Remarque. Plus généralement, si I et J sont deux parties finies et disjointes de N,
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En particulier, on peut séparer les termes d’indices pairs et ceux d’indices impairs :
2n n n—1
2,0 = D, am+ ), azut,
i=0 k=0 k=0

2. Changement d’indice

Une somme peut étre écrite de différentes manieres selon le choix de I'indice. Il peut étre plus pertinent de changer
d’indice pour manipuler une somme. Voici deux exemples de réécriture de somme :

n n—1 n n—1
Zak_1=a0+...+an_1= Zag, Zan_kzan_1+...+ao= Zag.
k=1 =0 k=1 ¢=0

On dit qu’on fait une réindexation de la somme en passant d’une écriture a l'autre. On distingue deux types de
réindexation.

n+p
— Translation : 2 ap, = am+...+a, = Z a¢—p, on a fait le changement d’indice ¢ = k + p.
l=m-+p
p—m
— Symeétrie : 2 ar = Gm+...+a, = Z ap—¢ : on a fait le changement d’indice ¢ = p — F.
l=p—n

Remarque. On prendra I’habitude de vérifier en réindexant que le nombre de terme de la somme ne change pas, et que
les termes de chacune des sommes sont les mémes. Il pourra étre utile a cette fin d’examiner le premier et le dernier
terme.

/A On ne peut effectuer des changements d’indice que du type ¢ = k + p ou £ = p—Fk, c’est-a-dire que le coefficient
devant I'indice de sommation est soit 1 (translation), soit —1 (symétrie).

n 2n n n—1
Exemples. Pour n € N*, on a Z Vn+k = Z VI, et Z Vn—k = Z N
k=1 f=n+1 k=1 £=0

3. Télescopage

Certaines sommes présentent la particularité que la quasi-totalité de ses termes s’annulent entre eux en sommant, par
exemple :

n
Z ak - ak+1 = (am - am+1) + (am+1 - am+2) +.o..t (anfl - an) + (an - an+1) = Qm — An+1,

les rendant tres faciles a calculer. On parle de sommes télescopiques.

Théoréme - Sommes télescopiques

Sim,neNavecm<netany,...,ans1 €K, alors
n

Z (ak+1 — k) = An+1 — Gm.

k=m
Démonstration. On a :
n n n n+1 n n+1
Z(ak+1_ak) = Z Ok+1 — Z ar = Z ag — Z ar = Z ak — Z Ak,
k=m k=m k=m {=m+1 k=m k=m+1
ou l'on a effectué le changement d’indice £ = k + 1 dans la premiére somme, puis renommé 'indice (qui est muet).
Ainsi,
n n n
Z A+1 _ak = < Z ak) + ap41 — <am+ Z ak) = OGp+1 — G- l
k=m k=m+1 k=m+1
n
Remarque. On a alors aussi Y, (ax — ag1) = Am — Any1

k=m
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Exemples.
~SineN,ona: Z (2k+1 — = ontl 1.
k=0
. . = 5[ 1 1
— SineN*, alors : Z Z(k_lm>:1_n+1'

k=1 k=1

n 1
Exercice 1. Calculer In{1+ - ].
2 < k)

4. Sommes classiques

Théoréme - Somme des n premiers entiers, n premiers carrés

Soit n € N*. On a

)

Zn:k n+1) Z": n+1)(2n+1).
k=1 k=1
Démonstration. On note S; = >, ket So = >, k2.

k=1 k=1

— Par changement d’indice, on a

Si= Nk, = Dm-0 - n;) ; n(n+1) =5, dou 8 = w

k=0 =0

— Pour tout ke N, on a (k+1)% — k% = 3k% + 3k + 1. Ainsi,
S +1)
E k+1)° -k = E k2 § k § 1= nin +1) 1.
pay + 3 +3k , + 352 +3 5 tnt

n

Comme par ailleurs par télescopage, Y. (k+1)3 — k3 = (n+ 1)3, on en déduit que :

k=0
1 1 1)(2 1
38, = <n+1)3—3@—<n+1) = (1P -2) - nin + )2( ntl), 0
n 2 1)2
Exercice 2. Par le méme procédé, montrer que Z K = n(nf—i—)
k=1
" Théoréme - Sommes géométriques
Soient m,n € N, avec m < n et ¢ € K\{1}. On a
n 1— n n—m+1
Z = q , et plus généralement Z ¢ = ¢
I—gq 1—g¢q
k=0
Démonstration. Par télescopage, on a (1 — q) Z Z (@"— ") = ¢ —q"" = ¢ (1—g" ). O
k=m k=m

ok 2t —1 +1

E les. ¥ = — = 2" 1.
xemples. © Z 51
k=0
. i (—1)* = 1—(—n)"*! _ 1+ (-1)" _ 1 sin est pair,

= 1—(-1) 2 0 sin est impair.
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" Théoréeme - Formule de Bernoulli

Soient a,b € K et n € N*. On a
a® b = (a—b)(a"t +a" b+ +ab" 2 ")
n—1 n—1
= (a—0) Z A = (a—b) OIS
k=0 k=0

Démonstration. Par télescopage, on a

n—1 n—1
(a o b) Z akbn—l—k _ Z ak‘+1 bn—l—k‘ _ akbn—k _ anbO _ aObn = q" — b". O
—
k=0 k=0 —pn—(k+1)
n
Remarque. En prenanta =1,ona1—b""! = (1-0) b*, et on retrouve le résultat sur les sommes géométriques.
k=0

5. Produits

On utilise une notation analogue a celle des sommes pour les produits.

Notation - Produit

Siai,...,a, € K sont des réels, on note "
nak = a1a2...0n.
k=1
Remarques. — Comme pour les sommes, on aura aussi parfois recours & la notation || a;.

el
— Par convention, le produit vide vaut 1: [] a; = 1.
[153%) n
— Sia €K et les entiers m,n vérifient m < n, alors [] a = a" ™1
k=m
— Les changements d’indices se font de la méme maniére que pour les sommes.

Factorielle. Pour tout n € N, on note

k=1
Par convention, 0! = 1.
Remarque. SineN, alors (n+1)! = (n+1)n!
" Théoréme - Propriétés des produits
SineN*etay,...,an,b1,...,b, € Ket meN tel que m < n,

n n n n ﬁak n m n
Hakbk = (Hak> <ku>, n% = kb=l Sibl,...,bnzo, et nak =S Hakx H ag.

n
k=1 % [T bx k=1 k=1 k=m-+1

n n
En particulier, si A € K, alors n Aap = A" H a.
k=1 k=1

n
/\ On ne peut pas simplifier Pexpression [] (ax + bg).
k=1
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" Théoréme - Produits télescopiques

Sim,n € N tels que m < n et ap,,...,an11 € K*, alors

n
1—[ Ag+1  Anyl
ak Ty

k=m

Démonstration. On a

n n+1 n
n [T ars1 [T a ( I1 ak) An41
Ak+1 _ k=m L=k+1 l=m+1 _ k=m+1 Ap+1 0
H ag B n B n N n T ooa,
k=m [T ax [T ax am [ ax m
k=m k=m k=m+1
n n n n
k+1 1k+1 1 k+1 1 n+1 n+1
Exemple. O - = X - (2 rre o= _ .
P nag 2%k kl:[l2 2 (2) kn:l 2 2 1 on

Il Coefficients binomiaux, formule du binome

Rappel Si F est un ensemble ayant un nombre fini d’éléments, on appelle cardinal de E son nombre d’éléments. On
le note Card E, ou encore |E|.

Définition - Coefficients binomiaux

Soient n € N et k € Z, on appelle coefficient binomial “k parmi n” et on note (Z) le nombre de parties a k
éléments de l’ensemble [1,n] si n € N* ou de & si n = 0.

Remarques. — Sik <0 ouk > n,alors (}) = 0.

~ Pour tout neN,ona (3) =1, (}) =n, (7) = 1.

n

— Plus généralement, (2) désigne le nombres de parties a k éléments de tout ensemble a n éléments.

" Théoréme - Propriétés des coefficients binmoiaux
Soient ne Net keZ. On a :

’ ' k n — k '
X |||u|e de FaS( al 5 1 non nu I " = " + n
2. I or . S1 n no 5 alors k k k .

-1
1i3. Formule du capitaine : si n et k£ non nuls, alors (Z) = % (n >

Démonstration.

i. Choisir k éléments parmi [1,n] revient & sélectionner les n — k éléments qu’on ne choisit pas. Il y a donc autant
de parties & k éléments dans [1,n] que de parties & n — k éléments.

1. Nous allons compter les parties de [1,n] & k éléments en scindant I’ensemble de ces parties en 2 :

— Pensemble A des parties de [1,n] & k éléments qui contiennent I’élément n,
— Pensemble B des parties de [1,n] & k éléments qui ne contiennent pas n.

Comme ceci décrit toutes les parties & k éléments, on a () = |A| + |B|. Ensuite, nous remarquons que
~ |AJ correspond au nombre de parties & k — 1 éléments dans [1,n — 1], done [4| = (}7}),
~ | B correspond au nombre de parties & k éléments dans [1,n — 1], donc [B| = ("").

43. On consideére le probleme suivant : on compte le nombre N de manieres de choisir dans un groupe de n personnes
une équipe de k personnes, parmi laquelle on choisit un capitaine. On peut procéder de deux maniéres différentes.
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— On peut choisir d’abord un capitaine parmi les n personnes : il y a n choix. Pour chaque choix de capitaine,
ilya (Zj) choix d’équipe : il s’agit de choisir les k — 1 autres membres de I’équipe dans le groupe de n — 1
personnes restant. Finalement, on a 1

n—
N =n .

— On peut choisir d’abord 1’équipe de k personnes : il y a alors (Z) choix. Pour chaque choix d’équipe, il y a
k choix de capitaine. Finalement, on obtient que

v

On conclut alors que k;(Z) =N = n(Z:}), d’ott le résultat. O

Triangle de Pascal. La formule de Pascal fournit un moyen rapide et pratique de retrouver les coefficients sans
avoir a les calculer. On écrit ces coefficients dans un tableau comme ci-dessous.

n\k |0 1 2 3 4 5
k-1 k 01
1 1 1
n—1 n—1 2 1 2 1
—1
g (o) @ (%)
! 4 |1 4 6 4 1
(n) 5 1 5 10 10 5 1
n )

On écrit d’abord les coefficients (8) et les coefficients (2), dont on sait qu’ils valent tous 1. Les autres coefficients

sont alors obtenus en additionnant les coefficients situés au-dessus et a gauche au-dessus. On peut ainsi remplir
progressivement le tableau, qu’on appelle triangle de Pascal du fait de sa forme.

Exercice 3. Soient n, k,i € N. Si on reproduit la démarche de la démonstration de la formule du capitaine et choisissant
k équipes dans un groupe de n personnes, et cette fois ¢ capitaines dans chaque équipe, quelle formule obtient-on 7

Théoréme - Expression des coefficients binomiaux

Soient n € Net k€ [0,n]. On a

(n) _ nx(n—1)%...x (n—k+1)

k Kln—k)! k! ‘

Démonstration. Montrons par récurrence que P(n) : “pour tout k € [0,n], (}) = ﬁl,ﬁ),, est vraie pour tout n € N.

~ Initialisation. Sin =0,ona (}) =1= g, donc P(0) est vraie.
— Hérédité. Soit n € N. On suppose que P(n) est vraie, et on cherche & montrer P(n + 1). Soit un entier k tel que
0 < k <n+ 1. Dapres la formule de Pascal, on a

("Zl) - (k‘ﬁl>+<z> - (k;—l)!(nn!— (k—l))!+k:!(nn!—k;)!

- kn! +(nJrlfk)n!
ok (n+1-k)! K(n+1—k)
_ (n+1)n! (n+1)!
En+1—k)! K m+1-k)!
On a donc bien montré que P(n + 1) est vraie, ce qui conclut. O
Remarques.

— On retrouve alors la relation de symétrie des coefficients binomiaux : si n € N et k € [0, n],

<nik> - (n—k)!(nn!— (n—k) (n—nli)!k! - <Z)

Lycée Montesquieu 6
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— On retrouve également la formule du capitaine : si n € N* et k € [0, n],

ny kn! _ n(n —1)! _ (n—1)! _ n—1
k(k) TR k-Dn-K "D -1 —k—1)) ”(k_1>'

Exemples. SineN, (Z) = @, (ni?)) = (g) = W

" Théoréme - Formule du bindme de Newton

Sia,beKetneN, alors

Démonstration. Montrons la formule par récurrence sur n.
— Initialisation. On a (a+n)? =1 = (8) a®b?; donc la formule est vraie pour n = 0.

— Hérédité. Soit n € N, on suppose que la formule est vraie au rang n. Montrons-la au rang n + 1 : d’apres
I’hypothese de récurrence, on a

(a+b)™ = (a+b) Z()b

_ "*1 n kbn (k—1) +? kanrlfk car (n) _ ( n ) =0
k‘ —1 n+1

par la formule de Pascal. O

Exemples. o Casn=3: (a+b)°=a®+3a2b+ 3ab® + 1.
o Casn=4: alors (a+b)* = a* + 4a3b + 6a2b® + 4ab® + 1.

o i():i() 1F1m=F = (1 4+ 1)" = 2m, é(Z)(n’“: n <Z>1’“1”’“=(1+1)"=0.

k=0 k=0
n k _ S n kqin—k _ n _ aqn

Z<k>2 Z<k>21 (2+1)" =3

k=0 k=0

/\ Ne pas confondre la formule du binéme de Newton avec la formule de Bernoulli (dans laquelle il n’y a pas de

coefficients binomiaux)! i
a® =" = (a—0b) Z akpnk,
k=0

Il Sommes doubles

Il arrive qu’on souhaite sommer des éléments qui dépendent de deux indices différents. On parle alors de sommes
doubles.

Lycée Montesquieu 7
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n P
Ezemple. Si on multiplie les sommes »; a; et Y. bj, on obtient :
i=1 j=1

n p
Zai ij = (a1 4 ...+ an) (b1 +...+b,) = arby + ...+ ab,
i=1 i=1 + ashy + ... +a2bp
+
+  apbi + ...+ apby.

On somme donc les termes a;b; pour (7,7) € [1,n] x [1,p]. Cette somme est notée Z a;b;.

1<i<n,
1<j<p

Sommes rectangulaires

On parle de somme double rectangulaire quand on somme les termes d’une famille (a; j)1<i<n de K. La somme est

1sy<p
noteée . /
Z a;j, et 2 a;; sin=p (on parle alors de somme carrée).

1<i<n 1<i,j<n
Isjsp

Ceci revient a sommer les termes d’un tableau rectangulaire, dont on s’apercoit aisément qu’on peut le sommer ligne

a ligne, ou colonne a colonne :

i\ 1 2 P
P
1 ai ai,2 . ai,p —> Z ai,j
j=1
P
2 az,1 az,2 az,p — Z az,;
j=1
n p
~ 5%
i=1j=1
P
j=1

n n n

P n
Ses See o Naw o3 ay

i=1 i=1 i=1 j=1li=1

On retiendra le résultat suivant.

Théoréme - Permutation des sommes rectangulaires

On a: B B P @
PR EIDIL D IPILE

1<i< i=1j= 3=l G
IS;SZ i=1j5=1 g=il d=il

Sommes triangulaires

On parle de sommes triangulaires lorsqu’on somme les termes d’une famille de la forme (a; ;)1<i<j<n OU (ai’j>1<i<j<n
d’éléments de K. On note alors les sommes respectives

Z (7%F et Z Q; j-
I<isjy<sn 1<i<j<n

Dans le premier cas, ceci revient & sommer les éléments d’'un tableau carré dont les coefficients a; ; tels que 7 < j sont
nuls. A nouveau, sommer ligne & ligne ou colonne & colonne est équivalent, ce qui donne deux formulations des sommes
triangulaires.

Le deuxieme cas est une simple adaptation.
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i\j 1 2 p
n
1 ai,1 ai,2 ai,n — Z ai,j
j=1
n
2 az.2 az,n > Z az,j
j=2
n n
— 2,2 au
i=1j5=1
n
n nn — > an,
j=n

1 2 n n J
i=1 i=1 i

On retiendra le résultat de permutation des sommes suivant.

Théoréme - Permutation des sommes triangulaires
Ona:

1<i<j<n i=1 1<i<j<n i=1

Remarque. Il sera toujours utile lors du calcul d’une somme double de se demander si le calcul ne serait pas plus aisé
en permutant les sommes, en suivant les regles ci-dessus.

Exemple. Calcul de la somme S,, = Z E

1<i<j<n J

D’apres les regles de permutation, on a

[\

1 S 1 jG+1) i+l Il 1 Inn+1) 1
2<Z> I e D R DI A DI E b £

Ainsi, S, = L"J DN % = 7”(”5 3)

Le résultat qui suit est une généralisation de I'identité remarquable bien connue (a1 + a2)? = a? + a3 + 2a1az au cas
d’une somme de n termes.

Théoreme - Carré d’'une somme

Soient ai,...,a, € K. On a

2
(ial> = iaf + 2 Z a;a;.
&= =

1<i<j<n

Lycée Montesquieu 9
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Démonstration. On a

($e) = ($0) (z ) “5(3ew) = E((Sew)ras( 3 an))

n i—1 n n n
= X Yaai+ Y ai+ Y Y aay

i=1j=1 i=1j=i+1

i=1
n
= Yoawai+ Y a4+ Y aa.
i=1

1<j<i<n 1<i<j<n

Les premiére et troisiéme somme de ce dernier terme sont identiques (on obtient I'une & partir de ’autre en échangeant
les indices de sommation i et j), d’ou le résultat. O

Lycée Montesquieu 10
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