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Chapitre 2

Sommes et produits

On désigne par K l’ensemble des nombres réels ou complexes.

I Sommes et produits
1. Le symbole

ř

˛ Soient un entier n et a1, . . . , an P K. On note
n

ÿ

k“1

ak la somme des nombres a1, . . . , an :
n

ÿ

k“1

ak “ a1 ` a2 ` ¨ ¨ ¨ ` an.

Plus généralement, si m,n sont des entiers tels que m ď n, on note
n
ř

k“m

ak “ am ` am`1 ` ¨ ¨ ¨ ` an.

˛ Si I est une partie finie de N et paiqiPI une famille de K par I, la somme des éléments de cette famille est
notée

ř

iPI

ai.

Notation - Somme

Remarques.

– L’indice d’une somme est muet (la somme ne dépend pas du choix de l’indice) :
n
ř

k“1

ak “
n
ř

i“1

ai “ a1 ` . . .` an.

– Par convention, la somme vide est nulle :
ř

kP∅
ak “ 0. En particulier, si m ą n, alors

n
ř

k“m

ak “ 0.

Exemples. ˛ Si q P K, 1 ` q ` q2 ` ¨ ¨ ¨ ` qn “

n
ÿ

k“0

qk.

˛ Si n P N‹, 1 ` 32 ` 52 ` ¨ ¨ ¨ ` p2n ` 1q2 “

n
ÿ

k“1

p2k ` 1q
2.

Remarques. – Si m,n P N avec m ď n, alors la somme
n
ř

k“m

ai comprend n ´ m ` 1 termes.

– On a alors
n
ř

k“m

1 “ n ´ m ` 1, et plus généralement, pour tout a P K,
n
ř

k“m

a “ pn ´ m ` 1q a.

Les propriétés suivantes proviennent directement des propriétés de l’addition dans K.

Soient n P N‹, a1, . . . , an, b1, . . . , bn, λ P K, et un entier m tel que m ă n

n
ÿ

k“1

pak ` bkq “

n
ÿ

k“1

ak `

n
ÿ

k“1

bk,
n

ÿ

k“1

λak “ λ
n

ÿ

k“1

ak, et
n

ÿ

k“1

ak “

m
ÿ

k“1

ak `

n
ÿ

k“m`1

ak.

Théorème - Propriétés de la somme

On ne peut pas simplifier l’expression
n
ř

k“1

akbk.

Remarque. Plus généralement, si I et J sont deux parties finies et disjointes de N,
ř

iPI\J

ai “
ř

iPI

ai `
ř

iPJ

ai.
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En particulier, on peut séparer les termes d’indices pairs et ceux d’indices impairs :
2n
ÿ

i“0

ai “

n
ÿ

k“0

a2k `

n´1
ÿ

k“0

a2k`1.

2. Changement d’indice

Une somme peut être écrite de différentes manières selon le choix de l’indice. Il peut être plus pertinent de changer
d’indice pour manipuler une somme. Voici deux exemples de réécriture de somme :

n
ÿ

k“1

ak´1 “ a0 ` . . . ` an´1 “

n´1
ÿ

ℓ“0

aℓ,
n

ÿ

k“1

an´k “ an´1 ` . . . ` a0 “

n´1
ÿ

ℓ“0

aℓ.

On dit qu’on fait une réindexation de la somme en passant d’une écriture à l’autre. On distingue deux types de
réindexation.

– Translation :
n

ÿ

k“m

ak “ am ` . . . ` an “

n`p
ÿ

ℓ“m`p

aℓ´p, on a fait le changement d’indice ℓ “ k ` p.

– Symétrie :
n

ÿ

k“m

ak “ am ` . . . ` an “

p´m
ÿ

ℓ“p´n

ap´ℓ : on a fait le changement d’indice ℓ “ p ´ k.

Remarque. On prendra l’habitude de vérifier en réindexant que le nombre de terme de la somme ne change pas, et que
les termes de chacune des sommes sont les mêmes. Il pourra être utile à cette fin d’examiner le premier et le dernier
terme.

On ne peut effectuer des changements d’indice que du type ℓ “ k ` p ou ℓ “ p´k, c’est-à-dire que le coefficient
devant l’indice de sommation est soit 1 (translation), soit ´1 (symétrie).

Exemples. Pour n P N‹, on a
n

ÿ

k“1

?
n ` k “

2n
ÿ

ℓ“n`1

?
ℓ, et

n
ÿ

k“1

?
n ´ k “

n´1
ÿ

ℓ“0

?
ℓ.

3. Télescopage

Certaines sommes présentent la particularité que la quasi-totalité de ses termes s’annulent entre eux en sommant, par
exemple :

n
ÿ

k“m

pak ´ ak`1q “ pam ´���am`1q ` p���am`1 ´���am`2q ` . . . ` p���an´1 ´��anq ` p��an ´ an`1q “ am ´ an`1,

les rendant très faciles à calculer. On parle de sommes télescopiques.

Si m,n P N avec m ď n et am, . . . , an`1 P K, alors
n

ÿ

k“m

pak`1 ´ akq “ an`1 ´ am.

Théorème - Sommes télescopiques

Démonstration. On a :
n

ÿ

k“m

pak`1 ´ akq “

n
ÿ

k“m

ak`1 ´

n
ÿ

k“m

ak “

n`1
ÿ

ℓ“m`1

aℓ ´

n
ÿ

k“m

ak “

n`1
ÿ

k“m`1

ak ´

n
ÿ

k“m

ak,

où l’on a effectué le changement d’indice ℓ “ k ` 1 dans la première somme, puis renommé l’indice (qui est muet).
Ainsi,

n
ÿ

k“m

pak`1 ´ akq “

˜

n
ÿ

k“m`1

ak

¸

` an`1 ´

˜

am `

n
ÿ

k“m`1

ak

¸

“ an`1 ´ am.

Remarque. On a alors aussi
n
ř

k“m

pak ´ ak`1q “ am ´ an`1.
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Exemples.

– Si n P N, on a :
n

ÿ

k“0

p2k`1 ´ 2kq “ 2n`1 ´ 1.

– Si n P N‹, alors :
n

ÿ

k“1

1

kpk ` 1q
“

n
ÿ

k“1

ˆ

1

k
´

1

k ` 1

˙

“ 1 ´
1

n ` 1
.

Exercice 1. Calculer
n

ÿ

k“1

ln

ˆ

1 `
1

k

˙

.

4. Sommes classiques

Soit n P N‹. On a n
ÿ

k“1

k “
npn ` 1q

2
,

n
ÿ

k“1

k2 “
npn ` 1qp2n ` 1q

6
.

Théorème - Somme des n premiers entiers, n premiers carrés

Démonstration. On note S1 “
n
ř

k“1

k et S2 “
n
ř

k“1

k2.

– Par changement d’indice, on a

S1 “

n
ÿ

k“0

k “
ℓ“n´k

n
ÿ

ℓ“0

pn ´ ℓq “ n
n

ÿ

ℓ“0

1 ´

n
ÿ

ℓ“0

ℓ “ npn ` 1q ´ S1, d’où S1 “
npn ` 1q

2
.

– Pour tout k P N, on a pk ` 1q3 ´ k3 “ 3k2 ` 3k ` 1. Ainsi,
n

ÿ

k“0

pk ` 1q3 ´ k3 “ 3
n

ÿ

k“0

k2 ` 3
n

ÿ

k“0

k `

n
ÿ

k“0

1 “ 3S2 ` 3
npn ` 1q

2
` n ` 1.

Comme par ailleurs par télescopage,
n
ř

k“0

pk ` 1q3 ´ k3 “ pn ` 1q3, on en déduit que :

3S2 “ pn ` 1q3 ´ 3
npn ` 1q

2
´ pn ` 1q “

n ` 1

2

`

pn ` 1q2 ´ 3n ´ 2
˘

“
npn ` 1qp2n ` 1q

2
.

Exercice 2. Par le même procédé, montrer que
n

ÿ

k“1

k3 “
n2pn ` 1q2

4
.

Soient m,n P N, avec m ď n et q P Kzt1u. On a
n

ÿ

k“0

qk “
1 ´ qn`1

1 ´ q
, et plus généralement

n
ÿ

k“m

qk “ qm
1 ´ qn´m`1

1 ´ q
.

Théorème - Sommes géométriques

Démonstration. Par télescopage, on a p1 ´ qq

n
ÿ

k“m

qk “

n
ÿ

k“m

pqk ´ qk`1q “ qm ´ qn`1 “ qm
`

1 ´ qn´m`1
˘

.

Exemples. ˛

n
ÿ

k“0

2k “
2n`1 ´ 1

2 ´ 1
“ 2n`1 ´ 1.

˛

n
ÿ

k“0

p´1q
k

“
1 ´ p´1q

n`1

1 ´ p´1q
“

1 ` p´1q
n

2
“

#

1 si n est pair,
0 si n est impair.
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Soient a, b P K et n P N‹. On a

an ´ bn “ pa ´ bqpan´1 ` an´2b ` ¨ ¨ ¨ ` abn´2 ` bn´1q

“ pa ´ bq
n´1
ÿ

k“0

akbn´1´k “ pa ´ bq
n´1
ÿ

k“0

an´1´kbk.

Théorème - Formule de Bernoulli

Démonstration. Par télescopage, on a

pa ´ bq
n´1
ÿ

k“0

akbn´1´k “

n´1
ÿ

k“0

ak`1 bn´1´k
loomoon

“bn´pk`1q

´ akbn´k “ anb0 ´ a0bn “ an ´ bn.

Remarque. En prenant a “ 1 , on a 1´ bn`1 “ p1´ bq
n
ř

k“0

bk, et on retrouve le résultat sur les sommes géométriques.

5. Produits

On utilise une notation analogue à celle des sommes pour les produits.

Si a1, . . . , an P K sont des réels, on note n
ź

k“1

ak “ a1a2 . . . an.

Notation - Produit

Remarques. – Comme pour les sommes, on aura aussi parfois recours à la notation
ś

iPI

ai.

– Par convention, le produit vide vaut 1 :
ś

iP∅
ai “ 1.

– Si a P K et les entiers m,n vérifient m ď n, alors
n

ś

k“m

a “ an´m`1.

– Les changements d’indices se font de la même manière que pour les sommes.

Factorielle. Pour tout n P N, on note
n! “

n
ź

k“1

k.

Par convention, 0! “ 1.

Remarque. Si n P N, alors pn ` 1q! “ pn ` 1qn!

Si n P N‹ et a1, . . . , an, b1, . . . , bn P K et m P N tel que m ă n,

n
ź

k“1

akbk “

˜

n
ź

k“1

ak

¸ ˜

n
ź

k“1

bk

¸

,
n

ź

k“1

ak
bk

“

n
ś

k“1

ak

n
ś

k“1

bk

si b1, . . . , bn ­“ 0, et
n

ź

k“1

ak “

m
ź

k“1

ak ˆ

n
ź

k“m`1

ak.

En particulier, si λ P K, alors
n

ź

k“1

λak “ λn
n

ź

k“1

ak.

Théorème - Propriétés des produits

On ne peut pas simplifier l’expression
n

ś

k“1

pak ` bkq.
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Si m,n P N tels que m ď n et am, . . . , an`1 P K‹, alors
n

ź

k“m

ak`1

ak
“

an`1

am
.

Théorème - Produits télescopiques

Démonstration. On a

n
ś

k“m

ak`1

ak
“

n
ś

k“m

ak`1

n
ś

k“m

ak

ℓ“k`1
“

n`1
ś

ℓ“m`1

aℓ

n
ś

k“m

ak

“

ˆ

n
ś

k“m`1

ak

˙

an`1

am
n

ś

k“m`1

ak

“
an`1

am
.

Exemple. On a
n

ź

k“1

k ` 1

2k
“

n
ź

k“1

1

2

k ` 1

k
“

ˆ

1

2

˙n n
ź

k“1

k ` 1

k
“

1

2n
n ` 1

1
“

n ` 1

2n
.

II Coefficients binomiaux, formule du binôme
Rappel Si E est un ensemble ayant un nombre fini d’éléments, on appelle cardinal de E son nombre d’éléments. On

le note CardE, ou encore |E|.

Soient n P N et k P Z, on appelle coefficient binomial “k parmi n” et on note
`

n
k

˘

le nombre de parties à k
éléments de l’ensemble J1, nK si n P N‹ ou de ∅ si n “ 0.

Définition - Coefficients binomiaux

Remarques. – Si k ă 0 ou k ą n, alors
`

n
k

˘

“ 0.

– Pour tout n P N, on a
`

n
0

˘

“ 1,
`

n
1

˘

“ n,
`

n
n

˘

“ 1.

– Plus généralement,
`

n
k

˘

désigne le nombres de parties à k éléments de tout ensemble à n éléments.

Soient n P N et k P Z. On a :

i. Symétrie :
ˆ

n

k

˙

“

ˆ

n

n ´ k

˙

.

ii. Formule de Pascal : si n non nul, alors
ˆ

n

k

˙

“

ˆ

n ´ 1

k ´ 1

˙

`

ˆ

n ´ 1

k

˙

.

iii. Formule du capitaine : si n et k non nuls, alors
ˆ

n

k

˙

“
n

k

ˆ

n ´ 1

k ´ 1

˙

.

Théorème - Propriétés des coefficients binmoiaux

Démonstration.

i. Choisir k éléments parmi J1, nK revient à sélectionner les n ´ k éléments qu’on ne choisit pas. Il y a donc autant
de parties à k éléments dans J1, nK que de parties à n ´ k éléments.

ii. Nous allons compter les parties de J1, nK à k éléments en scindant l’ensemble de ces parties en 2 :

– l’ensemble A des parties de J1, nK à k éléments qui contiennent l’élément n,
– l’ensemble B des parties de J1, nK à k éléments qui ne contiennent pas n.

Comme ceci décrit toutes les parties à k éléments, on a
`

n
k

˘

“ |A| ` |B|. Ensuite, nous remarquons que

– |A| correspond au nombre de parties à k ´ 1 éléments dans J1, n ´ 1K, donc |A| “
`

n´1
k´1

˘

,
– |B| correspond au nombre de parties à k éléments dans J1, n ´ 1K, donc |B| “

`

n´1
k

˘

.

iii. On considère le problème suivant : on compte le nombre N de manières de choisir dans un groupe de n personnes
une équipe de k personnes, parmi laquelle on choisit un capitaine. On peut procéder de deux manières différentes.
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– On peut choisir d’abord un capitaine parmi les n personnes : il y a n choix. Pour chaque choix de capitaine,
il y a

`

n´1
k´1

˘

choix d’équipe : il s’agit de choisir les k ´ 1 autres membres de l’équipe dans le groupe de n´ 1
personnes restant. Finalement, on a

N “ n

ˆ

n ´ 1

k ´ 1

˙

.

– On peut choisir d’abord l’équipe de k personnes : il y a alors
`

n
k

˘

choix. Pour chaque choix d’équipe, il y a
k choix de capitaine. Finalement, on obtient que

N “ k

ˆ

n

k

˙

.

On conclut alors que k
`

n
k

˘

“ N “ n
`

n´1
k´1

˘

, d’où le résultat.

Triangle de Pascal. La formule de Pascal fournit un moyen rapide et pratique de retrouver les coefficients sans
avoir à les calculer. On écrit ces coefficients dans un tableau comme ci-dessous.

k ´ 1 k

n ´ 1 . . .

ˆ

n ´ 1

k ´ 1

˙

‘

ˆ

n ´ 1

k

˙

. . .

Ó

n . . . . . .

ˆ

n

k

˙

. . .

nzk 0 1 2 3 4 5 . . .
0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
2 1 2 1 0 0 0 0
3 1 3 3 1 0 0 0
4 1 4 6 4 1 0 0
5 1 5 10 10 5 1 0
...

...
...

...
...

...
...

. . .

On écrit d’abord les coefficients
`

n
0

˘

et les coefficients
`

n
n

˘

, dont on sait qu’ils valent tous 1. Les autres coefficients
sont alors obtenus en additionnant les coefficients situés au-dessus et à gauche au-dessus. On peut ainsi remplir
progressivement le tableau, qu’on appelle triangle de Pascal du fait de sa forme.

Exercice 3. Soient n, k, i P N. Si on reproduit la démarche de la démonstration de la formule du capitaine et choisissant
k équipes dans un groupe de n personnes, et cette fois i capitaines dans chaque équipe, quelle formule obtient-on ?

Soient n P N et k P J0, nK. On a
ˆ

n

k

˙

“
n!

k!pn ´ kq!
“

n ˆ pn ´ 1q ˆ . . . ˆ pn ´ k ` 1q

k!
.

Théorème - Expression des coefficients binomiaux

Démonstration. Montrons par récurrence que Ppnq : “pour tout k P J0, nK, `

n
k

˘

“ n!
k!pn´kq!

”, est vraie pour tout n P N.

– Initialisation. Si n “ 0, on a
`

n
0

˘

“ 1 “ n!
0!n! , donc Pp0q est vraie.

– Hérédité. Soit n P N. On suppose que Ppnq est vraie, et on cherche à montrer Ppn ` 1q. Soit un entier k tel que
0 ď k ď n ` 1. D’après la formule de Pascal, on a

ˆ

n ` 1

k

˙

“

ˆ

n

k ´ 1

˙

`

ˆ

n

k

˙

“
n!

pk ´ 1q! pn ´ pk ´ 1qq!
`

n!

k! pn ´ kq!

“
k n!

k! pn ` 1 ´ kq!
`

pn ` 1 ´ kqn!

k! pn ` 1 ´ kq!

“
pn ` 1qn!

k! pn ` 1 ´ kq!
“

pn ` 1q!

k! pn ` 1 ´ kq!
.

On a donc bien montré que Ppn ` 1q est vraie, ce qui conclut.

Remarques.

– On retrouve alors la relation de symétrie des coefficients binomiaux : si n P N et k P J0, nK,
ˆ

n

n ´ k

˙

“
n!

pn ´ kq! pn ´ pn ´ kqq!
“

n!

pn ´ kq! k!
“

ˆ

n

k

˙

.
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– On retrouve également la formule du capitaine : si n P N‹ et k P J0, nK,
k

ˆ

n

k

˙

“
k n!

k! pn ´ kq!
“

npn ´ 1q!

pk ´ 1q!pn ´ kq!
“ n

pn ´ 1q!

pk ´ 1q! ppn ´ 1q ´ pk ´ 1qq!
“ n

ˆ

n ´ 1

k ´ 1

˙

.

Exemples. Si n P N,
ˆ

n

2

˙

“
npn ´ 1q

2
,

ˆ

n

n ´ 3

˙

“

ˆ

n

3

˙

“
npn ´ 1qpn ´ 2q

6
.

Si a, b P K et n P N, alors
pa ` bq

n
“

n
ÿ

k“0

ˆ

n

k

˙

akbn´k “

n
ÿ

k“0

ˆ

n

k

˙

an´kbk.

Théorème - Formule du binôme de Newton

Démonstration. Montrons la formule par récurrence sur n.

– Initialisation. On a pa ` nq0 “ 1 “
`

0
0

˘

a0b0, donc la formule est vraie pour n “ 0.

– Hérédité. Soit n P N, on suppose que la formule est vraie au rang n. Montrons-la au rang n ` 1 : d’après
l’hypothèse de récurrence, on a

pa ` bqn`1 “ pa ` bq
n

ÿ

k“0

ˆ

n

k

˙

akbn´k

“

n
ÿ

k“0

ˆ

n

k

˙

ak`1bn´k `

n
ÿ

k“0

ˆ

n

k

˙

akbn`1´k

“

n`1
ÿ

k“1

ˆ

n

k ´ 1

˙

akbn´pk´1q `

n
ÿ

k“0

ˆ

n

k

˙

akbn`1´k

“

n`1
ÿ

k“ 0

ˆ

n

k ´ 1

˙

akbn´pk´1q `

n`1
ÿ

k“0

ˆ

n

k

˙

akbn`1´k car
`

n
´1

˘

“
`

n
n`1

˘

“ 0

“

n`1
ÿ

k“0

ˆˆ

n

k ´ 1

˙

`

ˆ

n

k

˙˙

akbn`1´k

“

n`1
ÿ

k“0

ˆ

n ` 1

k

˙

akbn`1´k,

par la formule de Pascal.

Exemples. ˛ Cas n “ 3 : pa ` bq
3

“ a3 ` 3a2b ` 3ab2 ` 1.
˛ Cas n “ 4 : alors pa ` bq

4
“ a4 ` 4a3b ` 6a2b2 ` 4ab3 ` 1.

˛

n
ÿ

k“0

ˆ

n

k

˙

“

n
ÿ

k“0

ˆ

n

k

˙

1k1n´k “ p1 ` 1qn “ 2n,
n

ÿ

k“0

ˆ

n

k

˙

p´1q
k

“

n
ÿ

k“0

ˆ

n

k

˙

1k1n´k “ p´1 ` 1qn “ 0.

n
ÿ

k“0

ˆ

n

k

˙

2k “

n
ÿ

k“0

ˆ

n

k

˙

2k1n´k “ p2 ` 1qn “ 3n.

Ne pas confondre la formule du binôme de Newton avec la formule de Bernoulli (dans laquelle il n’y a pas de
coefficients binomiaux) !

an ´ bn “ pa ´ bq
n´1
ÿ

k“0

akbn´k.

III Sommes doubles
Il arrive qu’on souhaite sommer des éléments qui dépendent de deux indices différents. On parle alors de sommes
doubles.
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Exemple. Si on multiplie les sommes
n
ř

i“1

ai et
p
ř

j“1

bj , on obtient :

˜

n
ÿ

i“1

ai

¸ ˜

p
ÿ

j“1

bj

¸

“ pa1 ` . . . ` anqpb1 ` . . . ` bpq “ a1b1 ` . . . ` a1bp

` a2b1 ` . . . ` a2bp

` . . .

` anb1 ` . . . ` anbp.

On somme donc les termes aibj pour pi, jq P J1, nK ˆ J1, pK. Cette somme est notée
ÿ

1ďiďn,
1ďjďp

aibj .

Sommes rectangulaires

On parle de somme double rectangulaire quand on somme les termes d’une famille pai,jq 1ďiďn
1ďjďp

de K. La somme est
notée ÿ

1ďiďn
1ďjďp

ai,j , et
ÿ

1ďi,jďn

ai,j si n “ p (on parle alors de somme carrée).

Ceci revient à sommer les termes d’un tableau rectangulaire, dont on s’aperçoit aisément qu’on peut le sommer ligne
à ligne, ou colonne à colonne :

izj 1 2 . . . p

1 a1,1 a1,2 . . . a1,p ÝÑ

p
ÿ

j“1

a1,j

2 a2,1 a2,2 . . . a2,p ÝÑ

p
ÿ

j“1

a2,j

...
...

...
...

... ÝÑ

n
ÿ

i“1

p
ÿ

j“1

ai,j

n an,1 an,2 . . . an,p ÝÑ

p
ÿ

j“1

an,j

Ó Ó . . . Ó

n
ÿ

i“1

ai,1

n
ÿ

i“1

ai,2 . . .
n

ÿ

i“1

ai,p

+

Ñ

p
ÿ

j“1

n
ÿ

i“1

ai,j

On retiendra le résultat suivant.

On a :
ÿ

1ďiďn
1ďjďp

ai,j “

n
ÿ

i“1

p
ÿ

j“1

ai,j “

p
ÿ

j“1

n
ÿ

i“1

ai,j .

Théorème - Permutation des sommes rectangulaires

Sommes triangulaires

On parle de sommes triangulaires lorsqu’on somme les termes d’une famille de la forme pai,jq1ďiďjďn ou pai,jq1ďiăjďn

d’éléments de K. On note alors les sommes respectives
ÿ

1ďiďjďn

ai,j , et
ÿ

1ďiăjďn

ai,j .

Dans le premier cas, ceci revient à sommer les éléments d’un tableau carré dont les coefficients ai,j tels que i ă j sont
nuls. À nouveau, sommer ligne à ligne ou colonne à colonne est équivalent, ce qui donne deux formulations des sommes
triangulaires.
Le deuxième cas est une simple adaptation.
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izj 1 2 . . . p

1 a1,1 a1,2 . . . a1,n ÝÑ

n
ÿ

j“1

a1,j

2 a2,2 . . . a2,n ÝÑ

n
ÿ

j“2

a2,j

...
. . .

...
... ÝÑ

n
ÿ

i“1

n
ÿ

j“i

ai,j

n an,n ÝÑ

n
ÿ

j“n

an,j

Ó Ó . . . Ó

1
ÿ

i“1

ai,1

2
ÿ

i“1

ai,2 . . .
n

ÿ

i“1

ai,n

+

Ñ

n
ÿ

j“1

j
ÿ

i“1

ai,j

On retiendra le résultat de permutation des sommes suivant.

On a :

ÿ

1ďiďjďn

ai,j “

n
ÿ

i“1

˜

n
ÿ

j“i

ai,j

¸

“

n
ÿ

j“1

˜

j
ÿ

i“1

ai,j

¸

,
ÿ

1ďiăjďn

ai,j “

n´1
ÿ

i“1

˜

n
ÿ

j“i`1

ai,j

¸

“

n
ÿ

j“2

˜

j´1
ÿ

i“1

ai,j

¸

.

Théorème - Permutation des sommes triangulaires

Remarque. Il sera toujours utile lors du calcul d’une somme double de se demander si le calcul ne serait pas plus aisé
en permutant les sommes, en suivant les règles ci-dessus.

Exemple. Calcul de la somme Sn “
ÿ

1ďiďjďn

i

j
.

D’après les règles de permutation, on a

Sn “

n
ÿ

i“1

˜

n
ÿ

j“i

i

j

¸

“

n
ÿ

i“1

i

˜

n
ÿ

j“i

1

j

¸

, et Sn “

n
ÿ

j“1

˜

j
ÿ

i“1

i

j

¸

“

n
ÿ

j“1

1

j

˜

j
ÿ

i“1

i

¸

.

La somme
n
ř

j“i

1
j n’étant pas une somme qu’on sait calculer, on choisit la deuxième version. On a

Sn “

n
ÿ

j“1

1

j

˜

j
ÿ

i“1

i

¸

“

n
ÿ

j“1

1

j
ˆ

jpj ` 1q

2
“

n
ÿ

j“1

j ` 1

2
“

1

2

n
ÿ

j“1

j `
1

2

n
ÿ

j“1

1 “
1

2

npn ` 1q

2
`

1

2
n.

Ainsi, Sn “
npn ` 1q

4
`

n

2
“

npn ` 3q

4
.

Le résultat qui suit est une généralisation de l’identité remarquable bien connue pa1 ` a2q2 “ a21 ` a22 ` 2a1a2 au cas
d’une somme de n termes.

Soient a1, . . . , an P K. On a
˜

n
ÿ

i“1

ai

¸2

“

n
ÿ

i“1

a2i ` 2
ÿ

1ďiăjďn

aiaj .

Théorème - Carré d’une somme
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Démonstration. On a
ˆ

n
ř

i“1

ai

˙2

“

ˆ

n
ř

i“1

ai

˙

˜

n
ř

j“1

aj

¸

“
n
ř

i“1

ˆ

n
ř

j“1

aiaj

˙

“
n
ř

i“1

ˆˆ

i´1
ř

j“1

aiaj

˙

` a2i `

ˆ

n
ř

j“i`1

aiaj

˙˙

“
n
ř

i“1

i´1
ř

j“1

aiaj `
n
ř

i“1

a2i `
n
ř

i“1

n
ř

j“i`1

aiaj

“
ř

1ďjăiďn

aiaj `
n
ř

i“1

a2i `
ř

1ďiăjďn

aiaj .

Les première et troisième somme de ce dernier terme sont identiques (on obtient l’une à partir de l’autre en échangeant
les indices de sommation i et j), d’où le résultat.
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