MPSI — Mathématiques 2025-26

Chapitre 1

Rudiments de logique — Ensembles

| Eléments de logique

1. Propositions et prédicats

Définition - Proposition logique
I On appelle proposition, ou assertion tout énoncé qui est soit vrai, soit faux.

Exemples.

— Les énoncés “Paris est la capitale de la France”, “1 + 1 = 27, sont des propositions vraies (on dit que leur valeur
de vérité est vraie). Les énoncés “1 + 1 = 0”7, “m est un nombre rationnel” sont des propositions fausses.

x

— Les énoncés “Bonjour”, “(2z + 1)e®”, ne sont pas des propositions.

On dit que deux propositions sont équivalentes si elles ont méme valeur de vérité. Ainsi, si P et Q sont deux propositions
équivalentes et qu’on veut montrer que P est vraie, on pourra montrer que Q est vraie.

Dans les raisonnements mathématiques, on écrit simplement “P”, au lieu de “P est vraie”.

On appelle par ailleurs théoréme une assertion démontrée comme vraie.

Définition - Prédicat
On appelle prédicat un énoncé contenant une ou plusieurs variables, tel qu’en substituant chaque variable par
une valeur choisie dans un ensemble, on obtient une proposition.

Exemple. L’énoncé “n est un entier premier” est un prédicat : il est vrai ou faux selon la valeur de la variable n.

Remarque. On notera généralement P(z) un prédicat dont la valeur de vérité dépend de la valeur d’une variable x.

2. Connecteurs logiques

Nous allons voir qu’on peut construire, a partir d’une ou plusieurs propositions, de nouvelles propositions a 'aide de
connecteurs logiques.

Définition - Négation
La négation d’'une proposition P, notée —P, ou non P, est la proposition qui est vraie lorsque P est fausse et qui
est fausse lorsque P est vraie.

Remarques. — Table de vérité de —P : -P

P
\Y
F

F
\%

— La proposition — (—P) est équivalente & P.

Définition - Conjonction, disjonction
Soient P et Q deux propositions.

— Conjonction. La proposition P A Q, notée aussi P et Q, est la proposition qui est vraie si P et Q sont
vraies toutes les deux, et fausse sinon.

— Disjonction. La proposition P v Q, notée aussi P ou Q, est la proposition qui est vraie si au moins I'une
des deux propositions P et Q est vraie, et fausse sinon.
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Remarques. — Table de vérité :

| <] <) 9
| <| /| <O
M| | | <] >
| < < <<

- A Le ou logique est inclusif : “P ou Q7 est vraie lorsque soit P est vraie, soit @) est vraie, soit les
deux le sont.

Exemple. La proposition “La fonction In est croissante” ou “la fonction exp est décroissante” est vraie.

 Théoréme - Principes du tiers exclus et de non contradiction
Soit P une proposition.

— Principe de tiers exclus. La proposition P v (—P) est vraie.
— Principe de non contradiction. La proposition P A (—P) est fausse.

Démonstration. Simple vérification sur une table de vérité. O

% Montrer P v Q
Pour montrer que P v Q est vraie, on pourra rédiger de la maniére suivante.

Supposons que P est fausse. Montrons que Q est vraie.

|

En effet, on sait que P v (—P) est vraie, donc par disjonction de cas :

— soit P est vraie, et P v Q est vraie,
— soit P est fausse, et on aura montré que Q est vraie, donc P v Q est vraie.

' Théoréeme - Lois de Morgan
Soient P et Q deux propositions.
o La proposition — (P v Q) est équivalente a (—P) A (— Q).
o La proposition — (P A Q)” est équivalente a (—P) v (— Q).

Démonstration. On vérifie a I’aide d’une table de vérité que les propositions — (P v Q) et (—P) A (— Q) ont les mémes
valeurs de vérité. De méme pour les propositions — (P A Q) et (=P) v (= Q). O

Exemple. Si on considere le lancer de deux dés et qu’on appelle P la proposition “le premier dé est pair”, et Q la

proposition “le deuxiéme dé est pair”, alors :

— La proposition — (P A Q) est équivalente a (—P) v (— Q) : “au moins un des dés n’est pas pair.”

v
— La proposition — (P v Q) est équivalente & (—P) A (— Q) : “aucun des dés n’est pair.”

Définition - Implication, équivalence
Soient P et Q deux propositions.

— Implication. On note P = Q la proposition qui est fausse si P est vraie et Q est fausse, et vraie sinon.

— Equivalence. On note P < Q la proposition qui est vraie si P et Q ont méme valeur de vérité, et fausse
sinon.
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Remarques.
— Tablede vérité : | P | Q | P=Q | P<Q
V|V v \4
V| F F F
F |V \% F
F|F v \%

— La proposition P = Q se lit “P implique Q” ou bien “si P, alors Q”. En francais, une implication se traduit par
les mots : donc, alors, par conséquent, ainsi, d’o, . ..

— Négation de P = Q : par définition de I'implication, la proposition — (P = @) est équivalente & P A — Q.
— Autre formulation de P = Q : I'implication équivaut a la négation de — (P = @), c’est-a-dire (— P) v Q.
— A\ Cela peut surprendre mais, lorsque P est fausse, P = O est toujours vraie. Il faut retenir qu’une proposition

fausse implique n’importe quelle autre.

Ezemple. La proposition “si un éléphant est rose, alors il a cinq pattes” est vraie.

Exemples.

— “Je prends mon parapluie dés qu'il pleut” peut s’écrire : “Il pleut = Je prends mon parapluie”, sa négation peut
s’écrire : “Il pleut et je ne prends pas mon parapluie”.

— “Les champignons ne poussent qu’en automne” peut s’écrire “Il y a des champignons = C’est 'automne.” Sa
négation peut d’écrire “Il y a des champignons et ce n’est pas 'automne.”

% Montrer P = QO
Pour montrer que la proposition P = Q est vraie, on rédigera de la maniere suivante.

Supposons que P est vraie. Montrons que Q est vraie.

|

Condition nécessaire, condition suffisante.
Lorsque P = Q est vraie,
*x Q est vraie des que P est vraie donc 4l suffit que P soit vraie pour que Q le soit aussi : on dit que P est
une condition suffisante pour avoir Q,
* si Q est fausse, P ne peut pas étre vraie donc il faut que Q soit vraie pour que P le soit : on dit que Q est
une condition nécessaire pour avoir P.

Si P < Q est vraie, on dit que P est une condition nécessaire et suffisante (CNS) pour avoir Q.

Définition - Réciproque, contraposée
Soient P et Q deux propositions.
— On appelle réciproque de P = Q I'implication Q = P.
— On appelle contraposée de P = Q l'implication (— Q) = (—P).

Exemple. La contraposée de la proposition “s’il pleut, il y a des nuages” est “s’il n’y a pas de nuages, alors il ne pleut

”

pas”.

" Théoréme - Implication, contraposée, équivalence
Soient P et Q deux propositions.

— L’implication P = Q est équivalente & sa contraposée (— Q) = (—P).
— L’équivalence P < Q est équivalente a la double implication (P = Q) A (Q = P).
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Démonstration. On peut par exemple vérifier ces équivalences sur une table de vérité. O

Exemple. Soit n € N. Montrons : n pair < n? pair. Nous allons raisonner par double implication.
— Montrons : n pair = n? pair.

Supposons que n est pair. On sait alors qu’on peut écrire n = 2k pour un certain k € N.
Ainsi, n? = (2k)? = 4k? donc n? est pair.

— Montrons : n? pair = n pair.

Raisonnons par contraposée : montrons “n est impair = n? est impair”.

Supposons que n est impair. On sait alors que n s’écrit n = 2k + 1 avec k € N. Ainsi,
n? = (2k+1)* = 4k* + 4k +1 = 2(2k* + 2k) + 1.
Ceci entraine que n? est impair, et conclut la preuve.

/\  Lutilisation des symboles = et < est PROSCRITE a l'intérieur de la rédaction. Ces symboles ne pourront étre
utilisés que dans des propositions mathématiques.

On retiendra donc les raisonnements suivants pour montrer une implication ou une équivalence.

% Montrer une implication, montrer une équivalence
— Pour montrer une implication P = Q, on peut procéder :

— de maniéere directe : on suppose P vraie, et on montre que Q est alors vraie,
— par contraposée : on suppose Q fausse, et on montre que P est alors fausse.

— Pour démontrer une équivalence P < Q, on peut procéder :

— par équivalence : on établit une succession d’équivalence : P < ... < Q,

— par double implication : on montre séparément P = Q et Q = P.

3. Quantificateurs

a. Propositions quantifiées

Définition - Quantificateurs universel et existentiel

Soit P(z) un prédicat. On introduit les propositions suivantes.

— Quantificateur universel. La proposition Yz, P(z) est vraie si pour toute valeur de z, la proposition P(x)
est vraie, et fausse sinon.

— Quantificateur existentiel. La proposition 3z € E, P(x) est vraie s’il est possible de trouver au moins une
valeur de z telle que la proposition P(x) est vraie, et fausse sinon.

Remarques.
— Dans la pratique, la variable z a pour valeur un élément d’un ensemble E fixé, et on écrira alors Vo € E, P(x)
et 3z € E, P(z), qui ne sont autres que des notations pour Vz, (z € E = P(x)) et Iz, (x € E = P(x)).

— A Il faut bien noter que Yz, P(x) et 3z, P(x) ne sont pas des prédicats, mais bien des propositions : leur valeur
de vérité ne dépend pas de la valeur d’une variable.

On retiendra que toute variable précédée par un quantificateur dans une proposition (on parle de variable
quantifiée) est muette : on peut changer son écriture sans changer la proposition : Vz, P(z) et Vy, P(y) sont en
fait les mémes propositions.

Par conséquent, une variable quantifiée ne vit qu’a l'intérieur de la proposition.

A Les quantificateurs sont des symboles mathématiques, pas des abréviations! On ne les écrit pas au milieu d’une
phrase en frangais. On écrira dans ce cas “pour tout” ou “il existe” en toutes lettres.

Exemples.
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— Soit n € N. La proposition “n est pair” se récrit : 3k € N, n = 2k.
— Soit f une fonction de R dans R.

— La proposition “f est positive sur R” se récrit : Vz e R, f(z) >
x

0.
— La proposition “f est croissante sur R” se récrit : Vo, y e R, (z <y = f(z) < f(y)).

% Montrer une proposition universelle

Pour montrer une proposition du type Vz € E,P(x), on commence par fixer un élément x € F, puis on montre
que P(z) est vraie. On aura alors bien montré que P(x) est vraie pour tous les éléments x € E.

Dans la pratique, on écrit :

Soit x € E. Montrons P(x).

‘ ‘ Preuve de P(x) ‘

% Montrer une proposition existentielle

Pour montrer une proposition du type 3z € E, P(x), on peut :

— soit utiliser une preuve constructive, c’est-a-dire trouver un exemple explicite d’élément xy de E tel que
P(x) est vraie, dans ce cas on écrira :

Posons xg = ... Montrons P(xo).

‘ ‘ Preuve de P () ‘

— soit utiliser un théoreme dit d’existence, qui prouvera ’existence de x, sans en donner un exemple explicite.

Exemples.
— Montrons : 3z € [0,3], 22 — 3z +2 < 0.
Posons zg = % On a bien zo € [0, 3] et 3 —3x0+2 = —i < 0. La proposition est donc démontrée.
— Montrons : 3z e R, e* +2x = 0.

On définit sur R la fonction f : &+ 2 + ¢”. Comme e~' < 1, on a f(—1) < 0. Par ailleurs, f(0) = 1.

Par conséquent, comme [ est continue sur R et f(—1) < 0, f(0) > 0, le théoréme des valeurs intermédiaires
assure l'existence de x €] — 1,0][ tel que f(z) = 0, ce qui conclut.

Théoréme - Négation des proposition quantifiées
Soient E un ensemble et P(x) un prédicat.
— La proposition — (VJ: € F, P(a:)) est équivalente a z € E, —P(x).
— La proposition — (Ela: e E, 73(90)) est équivalente & Ve € E, —P(z).

Exemples.

— Négation de “tous les humains ont les yeux bleus” : “il existe au moins un humain qui n’a pas les yeux bleus”.
— Négation de “Vx e R, f(z) =07 : “Jx e R, f(z) # 0"

A retenir. Pour nier une proposition avec des quantificateurs, on pourra procéder de la maniere suivante.

1. On remplace les quantificateurs V par 3, et les quantificateurs 3 par V,

2. On nie le prédicat final.
Ezemple. Négation de Vx € E, Jye F, P(z,y) : Iz € E, Vye F, = P(x,y).
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Exemple. Soit f : R — R une fonction. Ecrivons la négation de P : “f est croissante” sous la forme d’une proposition
quantifiée. Comme on I'a vu, P est équivalente & Vz e R, Vy e R, z < y = f(x) < f(y). Ainsi, =P équivaut a

JzeR, JyeR, z<y et f(z)> f(y).

A Dans une proposition faisant intervenir plusieurs quantificateurs, il faut faire trés attention a I’ordre des quanti-
ficateurs. A titre d’exemple :
— La proposition “Vz € R, dy € R, & < y” est vraie : pour tout réel x, on peut trouver un réel y tel que =z < vy,
il suffit par exemple de choisir y = =z + 1.
— Mais la proposition “dJy € R, Vx € R, x < y” est fausse : on ne peut pas trouver de réel y qui soit supérieur
a tous les réels.

On méditera aussi sur I’exemple suivant : la proposition “dans toutes les cerises, il y a un noyau”, est bien différente
de la proposition “il y a un noyau qui est dans toutes les cerises” !

Permutation de quantificateurs.

— On peut permuter deux quantificateurs universels ou deux quantificateurs existentiels sans changer la valeur
de vérité de la proposition :

(Vz, Yy, P(z,y)) < (Vy, Vz, P(z,y)), et (Jz, Yy, Plz,y)) < (Jy, Iz, P(z,y)).

— On ne peut pas permuter deux quantificateurs différents : en général la proposition (V:E, Jy, P(=x, y)) n’est
pas équivalente & (Jy, Va, P(z,y)).

Remarque. On peut donc regrouper les quantificateurs V consécutifs ou les quantificateurs 3 consécutifs. Par exemple,
la proposition Va € R, Vb € R, (a + b)? = a® + 2ab + b? se récrit V(a,b) € R?, (a + b)? = a? + 2ab + b?, ou encore
Va,be R, (a+ b)? = a® + 2ab + b*.

b. Existence et unicité

Notation. Si P(z) est un prédicat, on note 3!z € E, P(z) la proposition qui est vraie 8’il existe un unique élément
x € E tel que P(x) est vraie, et fausse sinon.

Exemple. La proposition 3!n e N, 3 < 2n < 5 est vraie : il existe un unique entier n vérifiant 3 < 2n < 5, il s’agit de
n = 2.

Pour montrer qu’une proposition du type 3!z € E, P(z) est vraie, on est amené & montrer :

— Dexistence : on montre que qu’il y a au moins un élément z € E tel que P(z) est vraie (Jz € E, P(x)),

— Dunicité : on montre qu’il y a au plus un élément x € E tel que P(x) est vraie.

% Montrer I'unicité

Pour démontrer I’unicité, on peut supposer que deux éléments vérifient la propriété recherchée puis montrer que
ces éléments sont égaux.

Dans la pratique, on écrit :

Soient x,y € E tels que P(x) et P(y) sont vraies. Montrons que x = y.

‘ ‘Preuve de x = y‘

A Lorsqu’on a écrit cette preuve, on n’a pas démontré 'existence! On a seulement montré que s’il existe un
élément x € E tel que P(x) est vraie, alors il est unique.

Remarque. Certaines démonstrations d’existence et unicité se font au moyen d’un raisonnement par analyse-synthese,
que nous détaillerons plus loin.
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Il Ensembles

Un ensemble est une collection ou un groupement d’objets, qu’on appelle les éléments de I’ensemble.
Notation : si E est un ensemble, on note x € E si x est un élément de F et x ¢ E si x ne ’est pas.

Pour définir un ensemble, on peut procéder des différentes manieres suivantes.

— Définition en extension : on énumere tous les éléments de I’ensemble. On s’autorise aussi parfois a n’écrire que
le début de I’énumération des éléments lorsque la suite se comprend implicitement.

Ezemples : A ={1,3,4,6,9}, B={3,6,9,...}, N={0,1,2,3,...}, P ={0,2,4,6,...}.

— Définition en compréhension : on sélectionne dans un ensemble plus gros les éléments vérifiant une certaine
propriété : E = {r € F, P(x)}.

Ezemples : P = {n €N, n est pair}, Ry = {z e R, z > 0}.

— Définition paramétrique : on décrit ’ensemble comme ’ensemble des images f(x) d’une fonction f lorsque x
parcourt un ensemble A donné : E = {f(z), z € A}.

Exemples : P = {2k, ke N}, C = {n? ne N}

Exemple. Les ensembles de nombres N, Z, D = {1, ac Z et ne N}, Q = {g, peZetge N*}, R, C.

Définition - Cardinal
Si E est un ensemble ayant un nombre fini d’éléments, on appelle cardinal de E le nombre de ses éléments. On
le note Card E, ou |E].

Remarques. — L’ensemble ne contenant aucun élément est appelé I’ensemble vide et est noté &.

— Un ensemble ne contenant qu’un seul élément est appelé un singleton.

1. Inclusion, égalité d’ensembles, ensemble des parties d’un ensemble

Définition - Inclusion, ensemble des parties d’un ensemble
Soient A et B deux ensembles. On dit que A est inclus dans B si tout élément de A appartient a B, c’est-a-dire

Ve, te A=x€FE, ouencore VreA, xekFE.

Dans ce cas, on note A < B. On dit aussi que A est une partie, ou un sous-ensemble de B.

On note par ailleurs &(A) I'ensemble des parties de A.

Remarques.

— On peut donc écrire indifféremment A ¢ B ou A € Z(B).
— L’ensemble &7(A) est un ensemble d’ensembles : ses éléments sont les parties de A.
— Les ensembles @ et A sont toujours des parties de A.

Exemple. #({1,2,3}) = {@,{1},{2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}.

Définition-théoréme - Egalité de deux ensembles

On dit que deux ensembles A et B sont égaux, et on note A = B, si A et B ont exactement les mémes éléments.
Autrement dit, Vz, r€ A < z € B.

Ainsi; A = B équivaut & (A c Bet Bc A).

Comme l'inclusion et I’égalité entre ensembles s’écrivent a ’aide d’une implication ou d’une équivalence, la preuve de
ces assertions se rédige comme nous ’avons vu plus haut.
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% Montrer une inclusion ou une égalité d’ensembles
— Soient A, B deux ensembles. Pour montrer que A < B, on écrit :

Soit x € A. Montrons que x € B.

‘ ‘Preuve de v € B.

— Pour montrer que A = B, on peut :

— soit montrer séparément que A € B, puis que B < A (on dira qu’on raisonne par double inclusion),
— soit raisonner par équivalence : Soit x. Onar€ A < ... & x€ B.

Exemple. Soit A ={zeR, Vye R, z < y}. Montrons que A =R_.
On procede par double inclusion.
c Soit x € A, c’est-a-dire que pour tout y € Ry, on a z < y. Montrons que z € R_.
En prenant y = 0, on obtient que = < 0, donc x € R_.
D Soit z € R_. Montrons que z € A.

Soit ye R}.Onaz <0<y,doncz <y,etzeA

2. Opérations sur les ensembles

Définition - Union, intersection
Soient A et B deux ensembles.
— On appelle union de A et B I'ensemble Au B = {z € E, € Aoux e B}.
— On appelle intersection de A et B 'ensemble An B ={x€ E, v€ A et x € B}.

Remarques. — Pour tout ensemble A, ona AUuA=Aet An A= A.
~SiAcE,alors Avg=Aet AnE=A.
— Si A et B sont deux ensembles, ona AnBc Aet Ac Au B.

Théoréme - Propriétés de I'intersection et de I'union
Soient A, B et C trois ensembles. On a les propriétés suivantes.

— Commutativité : AuB=BuAet AnB=BnA
— Associativité : (AuB)uC=Au(BuC)et (AnB)nC=An(Bn(C)
— Distributivité : An(BuC)=(AnB)u(AnC)et Au(BnC)=(AuB)n(Au().

Exemple. Si A et B sont deux ensembles, alors: ¢ Ac B <« Au B = B,
o Ac B & AnB=A.

On peut généraliser 'intersection et 'union a un nombre quelconque de sous-ensembles. Si (A4;),.; est une famille

d’ensembles, on définit
UAi = {1‘7 HiEI,HIGAi} et mAZ:{[E,VZGI,QL‘GAZ}

el el

Exemples. 1. U{n}:N, 2. U[n,n+1[: R4, 3. ﬂ [—i,i[— ﬁo [—:L,Tll[—{O}.

neN neN neN* n=1

Définition - Ensembles disjoints, partition
— On dit que deux ensembles A et B sont disjoints si A n B = @, c’est-a-dire s’ils n’ont aucun élément en
commun. Dans ce cas, on note parfois A L B au lieu de A u B.

— Soit E un ensemble. On dit qu'un ensemble {4;, i € I} de parties non vides de F est une partition si :

i. les ensembles A; sont deux a deux disjoints : si i # j, alors A; N A; = &,
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i | |A;=E.
I el

Exemples. 1.Si A= {2k, ke N} et B={2k+ 1, ke N}, alors A et B forment une partition de N.
En effet, AnB=9,et AuB=N.

2. Si C,, = [n,n + 1] pour tout n € N, alors les ensembles C,, forment une partition de R..

Définition - Différence, complémentaire
Soient E un ensemble et A, B des parties de E.
— On appelle différence de B dans A 'ensemble B\A = {z € B, = ¢ A}.

— On appelle complémentaire de A dans E I'ensemble E\A. On le note A ou A°¢ lorsqu’il n’y a pas d’ambiguité.
Onadonc A = {x€F, x¢ A},ouencore: Ve e E, 1€ A < x¢ A.

Remarques. ~ SiAc E aloos AUA=FEet AnA=@: Aet A forment une partition de E.
~ Si A et B sont deux ensembles, B\A = B n A.
— Si A et B sont deux ensembles, Ac B <« B c A.

En effet, la contraposée de x € A = x € B s’écrit x ¢ B = x ¢ A.

- SiACE,alorsjzA, E=0et@=E.

Exemple. Le complémentaire dans R de l'intervalle | — 1, 3] est I’ensemble | — 0, —1] U ]3, +o0].

" Théoréme - Lois de Morgan

Si F est un ensemble et A et B sont deux parties de E, alors

AnB=AuB e AuB=AnB.

Démonstration. Ceci découle directement des lois de Morgan pour les propositions (exercice : s’en convaincre!). [

Exercice 1. Montrer que pour tous A, B € Z(E), on a (A\B) u (B\A) = (A u B)\(4 n B). Cet ensemble est appelé
différence symétrique de A et B et se note AAB.

Définition - Produit cartésien

Soient E et F' deux ensembles. On définit le produit cartésien de E et de F', noté E x F, comme ’ensemble des
couples dont la premiere composante est un élément de E et la seconde un élément de F', c’est-a-dire

ExF = {(z,y), ze E et ye F}.

Dans le cas ott E = F, on note F? au lieude E x E.

A Un couple (z,y) et un ensemble & deux éléments {x, y} sont des objets mathématiques bien différents. Par exemple,
{1,2} = {2,1}, mais (1,2) # (2,1), ou encore : {1,1} = {1}, mais (1,1) # (1).

Généralisation. Si Fy,..., E, sont des ensembles, on définit le produit cartésien de ces ensembles par

E1 X ... XEn = {(J}l,...,.’lfn)7 Vi e ﬂl,nﬂ,xieEi}.

Un élément (x1,...,2,) de By x ... x E, est appelé un n—uplet.

Lorsque F1 = ... = E,, on note E™ au lieude E x ... x E,.

Remarques.
— Dans une proposition quantifiée, il est équivalent d’écrire “Vz € A, Vy e B...” ou “V(z,y) € A x B,...".
— On a par ailleurs tendance & condenser I'écriture “V(z,y) € E2,...” en “Vz,y € E,...".
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11l Raisonnement

Pour démontrer qu’une proposition P est vraie, on peut penser aux raisonnements suivants.
— Déduction. Si on sait que Q est vraie et que Q = P est vraie, alors P est vraie (modus ponens).
C’est le raisonnement utilisé lorsqu’on invoque un théoréme pour montrer un résultat.

— Disjonction de cas. On peut souhaiter séparer la démonstration d’une proposition en 1’étude d’une liste ex-
haustive de sous-cas.

En particulier, il arrive qu’on distingue le cas ot une proposition Q est vraie, et celui ou elle est fausse. On aura
alors montré @ = P et — Q = P, ce qui suffit & montrer que P est vraie.

Exercice 2. Montrer que pour tout n € N, n? + n est un entier pair.

— Raisonnement par I’absurde. On commence par supposer que P est fausse, puis on montre qu’on peut alors en
déduire une contradiction, c¢’est-a-dire une proposition de la forme Q A (— Q). On en conclut que P est vraie.

Montrer P par I'absurde. Pour montrer que P est vrai en raisonnant par ’absurde, on écrit :
Supposons que P est fausse.

‘ Alors I:] , il y a donc contradiction.

Donc P est vraie.

Exemple. Montrons que V/2 est irrationnel.

Raisonnons par I'absurde : supposons que v/2 est rationnel. On sait donc qu’il existe p € N et ¢ € N*
tels que V2 = %, ou la fraction %’ est irréductible, c’est-a-dire que p et ¢ sont premiers entre eux.

p P’
Comme v2 ==, ona2="3, doncp® = 2¢.
q q

Ceci implique que p? est pair donc, comme nous l’avons vu, p est pair. Autrement dit, il existe k € N

tel que p = 2k. Ainsi,
auep 2¢* = (2k)? = 4k*, donc ¢ = 2k%

Par conséquent, ¢2 est pair. A nouveau, ceci implique que ¢ est pair. Finalement, on a montré que p
est pair et ¢ est pair, donc p et ¢ ont 2 pour diviseur commun, et g n’est pas sous forme irréductible,
il y a contradiction.

On en conclut que v/2 n’est pas rationnel.

Nous avons déja rencontré le cas de la démonstration d’une proposition sous la forme d’une implication ou d’une
équivalence. Nous détaillons deux techniques supplémentaires qui s’appliquent a des situations bien particulieres.

1. Raisonnement par analyse synthése

Il faut penser a cette démarche :

— lorsqu’on cherche & résoudre un probléme du type “trouver tous les x tels que P(x)” (par exemple : une équation
ou une inéquation),

— lorsqu’on cherche & montrer une proposition du type “il existe un unique z tel que P(z)”. Ceci revient d’ailleurs
au cas ci-dessus, auquel on ajoute le fait qu’il y a une unique solution x.

% Raisonner par analyse-synthése
On procede en deux étapes :

— Analyse : On suppose qu’il existe = tel que P(x) est vraie et on cherche a en déduire des valeurs possibles
de z. On raisonne par conditions nécessaires.
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ANALYSE.  Soit  tel que P(z) est vraie.

E , alors (nécessairement) x € {...}

Ensemble des
“candidats”

On obtient un ensemble qui contient tous les “candidats possibles” pour z. C’est-a-dire que x ne peut pas
prendre d’autres valeurs, mais on ne peut garantir a ce stade que toutes ces valeurs sont solutions.

— Synthése : “on vérifie si le ou les candidats sont valides”. On détermine les éléments z dans ’ensemble de
“candidats” ci-dessus pour lesquels P(x) est vraie.

En d’autres termes, on détermine si les conditions nécessaires sont suffisantes.

On conclut ensuite en donnant I'intégralité des solutions, déterminées lors de la synthese.

L J

Remarque. Lorsqu’on utilise ce raisonnement pour montrer “3lz € E, P(x)”, on écrit :
ANALYSE. Soit x tel que P(z).
‘ I:] , alors © = xy (a ce stade on a montré unicité).

SYNTHESE. Montrons que P(xq) est vrai

‘ ‘ Preuve de P(xo) ‘ (ce qui montre existence).

Exemple. Résolvons I'équation 1/ = 2z — 1, d’inconnue z € R par analyse-synthése.

— Analyse. Soit z € R, une solution de I’équation. En composant par la fonction carrée, on obtient alors
r = (20 —1) = 42> —4x +1, donc 42®> —5xr+1 = 0.

Comme les racines de 422 — 5z + 1 sont 1 et i, on en déduit que = € {i, 1}.

1

— Synthese. On constate que 1 est bien solution de I’équation, mais

ne ’est pas.

On a donc montré que 1 est la seule solution de I’équation.

Exemple. Soit f une fonction de R dans R. Montrons qu’il existe un unique couple de fonctions (g, h) tel que g est
paire, h est impaire et f = g + h (en d’autres termes, f s’écrit de maniére unique comme la somme d’une fonction
paire et d’une fonction impaire).

— Analyse. Soit (g, h) un couple de fonctions de R dans R telles que g est paire, h est impaire et f = g + h.

{ f(@) = g(x)+ h(z),
f(=z) = g(x) = h(z)

Pour tout x € R, on a alors

du fait que g(—x) = g(x) et h(—z) = —h(z). En additionnant, puis en soustrayant les deux égalités ci-dessus,
on obtient 1 1
9(z) = S(f(@) + f(=x)), et h(z) = S(f(z) = f(=2)).
— Synthése. Sion pose g: x> 3(f(x)+ f(—z)) et h:z— (f(z)— f(—2)), on a

o pour tout z € R, g(x) + h(x) = f(x), donc f =g+ h,
o pour tout z € R, f(—z) = f(x), donc f est paire,
o pour tout x € R, g(—z) = —g(x), donc g est impaire.

Ainsi, le couple (g, h) est 'unique couple de fonctions qui convient.
2. Raisonnement par récurrence

On considére un prédicat P(n) qui porte sur la variable n & valeurs dans N. Le raisonnement par récurrence fournit
un moyen de montrer : VYn € N, P(n).

Principe de récurrence. Si on a :

— P(0) est vraie (Initialisation),
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- VneN, P(n)=P(n+1) est vraie (Hérédité),

alors Vn € N, P(n) est vraie.

% Rédiger une démonstration par récurrence

Montrons par récurrence que pour tout n € N, P(n) est vraie.

— INITIALISATION. | Preuve de P(0) |.

— HEREDITE. Soit n € N. Supposons P(n). Montrons P(n + 1).

‘ ‘ Preuve de P(n + 1) ‘

J

A Dans I'hérédité, on ne suppose surtout pas que P(n) est vraie pour tout n (sinon, il n’y a plus rien a prouver!),
mais bien que P(n) est vraie pour un entier n fixé. On montre qu’alors P(n + 1) est encore vraie.

Remarque. On peut adapter ce raisonnement pour le cas ot on souhaite montrer Vn = ng, P(n), ot ng € N. Il suffit
alors de remplacer P(0) par P(ng) dans linitialisation, et de fixer un entier n > ny dans ’hérédité.

Exemple. Soit x un réel positif. Montrons que pour tout n € N, (1 + )" > 1 + nz.
Nous allons raisonner par récurrence. Pour tout n € N, on note P(n) : “(1 4+ 2)" = 1 + na”.
— Initialisation. Sin=0,ona (1+ )" =1=1+ nz, donc P(0) est vraie.
— Hérédité. Soit n € N. Supposons que P(n) est vraie et montrons que P(n + 1) est vraie. On a
(1+2)"™ = 1+z)(1+2)" = (1+2z)(1+nz).

car d’aprés 'hypothese de récurrence, (1+x)™ = 1+nx, et 1+ 2 > 0. Ainsi, on trouve en développant
que (1+2)" > 1+ (n+ 1)z +n2? > 1+ (n+ 1)z, car nz? > 0. Par conséquent, P(n + 1) est vraie.

Remarque. Soient n,ns deux entiers naturels, si 'hérédité n’est valable que pour n € [ny,ns], on parle de récurrence
finie :

si P(n1) est vraie et Vn € [ny,ne — 1], P(n) = P(n + 1) est vraie, alors Vn € [ny,na], P(n) est vraie.

Récurrence double

Parfois, on ne parvient pas a déduire P(n + 1) de P(n), mais on parvient & montrer P(n + 2) en supposant que P(n)
et P(n + 1) sont vraies. On peut alors utiliser le principe dit de récurrence double :

si P(0) est vraie et Yn e N, (P(n) et P(n + 1)) = P(n + 2) est vraie, alors Vn € N, P(n) est vraie.

1l s’agit en faut d’une simple adaptation du principe ci-dessus : on montre par récurrence que pour tout n € N, P(n)
et P(n + 1) sont vraies. On rédige alors de la maniére suivante.

e

% Rédaction d’une récurrence double

— INITIALISATION. ‘Preuve de P(0) et P(1) ‘

— HEREDITE. Soit n € N. Supposons P(n) et P(n + 1). Montrons P(n + 2).

’ Preuve de P(n + 2) ‘

Exemple. Soit la suite (uy,)neny définie par : ug = uy = —1, et pour tout n € N, u,19 = Supqq1 — 6u,. Montrons que
pour tout n € N, u,, = 3" — 27*1,

Pour n € N, on note P(n) la proposition “u,, = 3" — 2"+1”,

— Initialisation. Sin =0, on a 3" — 2" = —1 = ug, donc P(0) est vraie,
Sin=1,ona3"—2"" = —1 = u; donc P(1) est vraie.
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— Hérédité. Soit n € N. Supposons que P(n) et P(n + 1) sont vraies et montrons P(n + 2). On a
Upgpo = 5un+l _ 67.Ln =5 (3n+1 _ 2’ﬂ+2) -6 (377, _ 21’L+1) = 9 x 3n — 4 x 21’L+1 — 3’ﬂ+2 _ 2’ﬂ+3.
Ainsi, P(n + 2) est vraie.

On a donc montré par récurrence double que pour tout n € N, u,, = 3" — 2"+1,

Remarque. Si nécessaire, on peut bien sir également faire des raisonnements par récurrence triple, voire des récur-

rences d’ordre supérieur.

Récurrence forte

11 arrive méme qu’on ait besoin de supposer que toutes les propositions P(0),...,P(n) sont vraies pour en déduire

P(n +1). On peut s’appuyer sur le principe dit de récurrence forte :

si P(0) est vraie et Yn e N, (Vk € [0,n], P(k)) = P(n + 1) est vraie, alors Vn € N, P(n) est vraie.

A nouveau, il s’agit d’une simple adaptation du principe de récurrence : on montre par récurrence que pour tout n € N,

P(0),...,P(n) sont vraies.

p

% Rédaction d’une récurrence forte

— INITIALISATION. | Preuve de P(0) |.

— HEREDITE. Soit n € N. Supposons P(0), ..., P(n) vraies. Montrons P(n + 1).

’ Preuve de P(n + 1) ‘

Exemple. Montrons que tout entier n > 2 admet un diviseur premier.

Pour tout entier n > 2, on note P(n) : “n admet un diviseur premier”. Montrons par récurrence forte que
P(n) est vraie pour tout n = 2.

— Initialisation. Comme 2 est premier, P(2) est clairement vraie.

— Hérédité. Soit n > 2. On suppose que P(k) est vraie pour tout k¥ < n. Montrons P(n + 1).

Sin + 1 est premier, alors P(n + 1) est clairement vérifiée.

Si en revanche n + 1 n’est pas premier, alors il admet un diviseur dans [2,n]. On peut donc
écrire n+1 = ab, ol a et b sont deux entiers appartenant a [2,n]. L’hypothése de récurrence
assure alors que a posséde un diviseur premier, qui est aussi diviseur de n + 1, ce qui conclut.
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