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Chapitre 1

Rudiments de logique – Ensembles

I Eléments de logique
1. Propositions et prédicats

On appelle proposition, ou assertion tout énoncé qui est soit vrai, soit faux.
Définition - Proposition logique

Exemples.

– Les énoncés “Paris est la capitale de la France”, “1` 1 “ 2”, sont des propositions vraies (on dit que leur valeur
de vérité est vraie). Les énoncés “1` 1 “ 0”, “π est un nombre rationnel” sont des propositions fausses.

– Les énoncés “Bonjour”, “p2x` 1qex”, ne sont pas des propositions.

On dit que deux propositions sont équivalentes si elles ont même valeur de vérité. Ainsi, si P et Q sont deux propositions
équivalentes et qu’on veut montrer que P est vraie, on pourra montrer que Q est vraie.

Dans les raisonnements mathématiques, on écrit simplement “P”, au lieu de “P est vraie”.

On appelle par ailleurs théorème une assertion démontrée comme vraie.

On appelle prédicat un énoncé contenant une ou plusieurs variables, tel qu’en substituant chaque variable par
une valeur choisie dans un ensemble, on obtient une proposition.

Définition - Prédicat

Exemple. L’énoncé “n est un entier premier” est un prédicat : il est vrai ou faux selon la valeur de la variable n.

Remarque. On notera généralement Ppxq un prédicat dont la valeur de vérité dépend de la valeur d’une variable x.

2. Connecteurs logiques

Nous allons voir qu’on peut construire, à partir d’une ou plusieurs propositions, de nouvelles propositions à l’aide de
connecteurs logiques.

La négation d’une proposition P, notée ␣P, ou nonP, est la proposition qui est vraie lorsque P est fausse et qui
est fausse lorsque P est vraie.

Définition - Négation

Remarques. – Table de vérité de ␣P : P ␣P
V F
F V

– La proposition ␣p␣Pq est équivalente à P.

Soient P et Q deux propositions.

– Conjonction. La proposition P ^ Q, notée aussi P et Q, est la proposition qui est vraie si P et Q sont
vraies toutes les deux, et fausse sinon.

– Disjonction. La proposition P _ Q, notée aussi P ou Q, est la proposition qui est vraie si au moins l’une
des deux propositions P et Q est vraie, et fausse sinon.

Définition - Conjonction, disjonction
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Remarques. – Table de vérité : P Q P ^Q P _ Q
V V V V
V F F V
F V F V
F F F F

– Le ou logique est inclusif : “P ou Q” est vraie lorsque soit P est vraie, soit Q est vraie, soit les
deux le sont.

Exemple. La proposition “La fonction ln est croissante” ou “la fonction exp est décroissante” est vraie.

Soit P une proposition.

– Principe de tiers exclus. La proposition P _ p␣Pq est vraie.
– Principe de non contradiction. La proposition P ^ p␣Pq est fausse.

Théorème - Principes du tiers exclus et de non contradiction

Démonstration. Simple vérification sur une table de vérité.

Pour montrer que P _Q est vraie, on pourra rédiger de la manière suivante.

Supposons que P est fausse. Montrons que Q est vraie.

Preuve de Q

Montrer P _Q

En effet, on sait que P _ p␣Pq est vraie, donc par disjonction de cas :

– soit P est vraie, et P _Q est vraie,
– soit P est fausse, et on aura montré que Q est vraie, donc P _Q est vraie.

Soient P et Q deux propositions.

˛ La proposition ␣pP _Qq est équivalente à p␣Pq ^ p␣Qq.
˛ La proposition ␣pP ^Qq” est équivalente à p␣Pq _ p␣Qq.

Théorème - Lois de Morgan

Démonstration. On vérifie à l’aide d’une table de vérité que les propositions ␣pP_Qq et p␣Pq^p␣Qq ont les mêmes
valeurs de vérité. De même pour les propositions ␣pP ^Qq et p␣Pq _ p␣Qq.

Exemple. Si on considère le lancer de deux dés et qu’on appelle P la proposition “le premier dé est pair”, et Q la
proposition “le deuxième dé est pair”, alors :

– La proposition ␣pP ^Qq est équivalente à p␣Pq _ p␣Qq : “au moins un des dés n’est pas pair.”
– La proposition ␣pP _Qq est équivalente à p␣Pq ^ p␣Qq : “aucun des dés n’est pair.”

Soient P et Q deux propositions.

– Implication. On note P ñ Q la proposition qui est fausse si P est vraie et Q est fausse, et vraie sinon.
– Équivalence. On note P ô Q la proposition qui est vraie si P et Q ont même valeur de vérité, et fausse

sinon.

Définition - Implication, équivalence
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Remarques.

– Table de vérité : P Q P ñ Q P ô Q
V V V V
V F F F
F V V F
F F V V

– La proposition P ñ Q se lit “P implique Q” ou bien “si P, alors Q”. En français, une implication se traduit par
les mots : donc, alors, par conséquent, ainsi, d’où, . . .

– Négation de P ñ Q : par définition de l’implication, la proposition ␣pP ñ Qq est équivalente à P ^␣Q.
– Autre formulation de P ñ Q : l’implication équivaut à la négation de ␣pP ñ Qq, c’est-à-dire p␣P q _Q.

– Cela peut surprendre mais, lorsque P est fausse, P ñ Q est toujours vraie. Il faut retenir qu’une proposition
fausse implique n’importe quelle autre.

Exemple. La proposition “si un éléphant est rose, alors il a cinq pattes” est vraie.

Exemples.

– “Je prends mon parapluie dès qu’il pleut” peut s’écrire : “Il pleut ñ Je prends mon parapluie”, sa négation peut
s’écrire : “Il pleut et je ne prends pas mon parapluie”.

– “Les champignons ne poussent qu’en automne” peut s’écrire “Il y a des champignons ñ C’est l’automne.” Sa
négation peut d’écrire “Il y a des champignons et ce n’est pas l’automne.”

Pour montrer que la proposition P ñ Q est vraie, on rédigera de la manière suivante.

Supposons que P est vraie. Montrons que Q est vraie.

Preuve de Q

Montrer P ñ Q

Condition nécessaire, condition suffisante.
Lorsque P ñ Q est vraie,

‹ Q est vraie dès que P est vraie donc il suffit que P soit vraie pour que Q le soit aussi : on dit que P est
une condition suffisante pour avoir Q,

‹ si Q est fausse, P ne peut pas être vraie donc il faut que Q soit vraie pour que P le soit : on dit que Q est
une condition nécessaire pour avoir P.

Si P ô Q est vraie, on dit que P est une condition nécessaire et suffisante (CNS) pour avoir Q.

Soient P et Q deux propositions.

– On appelle réciproque de P ñ Q l’implication Qñ P.
– On appelle contraposée de P ñ Q l’implication p␣Qq ñ p␣Pq.

Définition - Réciproque, contraposée

Exemple. La contraposée de la proposition “s’il pleut, il y a des nuages” est “s’il n’y a pas de nuages, alors il ne pleut
pas”.

Soient P et Q deux propositions.

– L’implication P ñ Q est équivalente à sa contraposée p␣Qq ñ p␣Pq.
– L’équivalence P ô Q est équivalente à la double implication pP ñ Qq ^ pQñ Pq.

Théorème - Implication, contraposée, équivalence
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Démonstration. On peut par exemple vérifier ces équivalences sur une table de vérité.

Exemple. Soit n P N. Montrons : n pair ô n2 pair. Nous allons raisonner par double implication.

– Montrons : n pair ñ n2 pair.

Supposons que n est pair. On sait alors qu’on peut écrire n “ 2k pour un certain k P N.
Ainsi, n2 “ p2kq2 “ 4k2 donc n2 est pair.

– Montrons : n2 pair ñ n pair.

Raisonnons par contraposée : montrons “n est impair ñ n2 est impair”.
Supposons que n est impair. On sait alors que n s’écrit n “ 2k ` 1 avec k P N. Ainsi,

n2 “ p2k ` 1q2 “ 4k2 ` 4k ` 1 “ 2p2k2 ` 2kq ` 1.

Ceci entraîne que n2 est impair, et conclut la preuve.

L’utilisation des symboles ñ et ô est PROSCRITE à l’intérieur de la rédaction. Ces symboles ne pourront être
utilisés que dans des propositions mathématiques.

On retiendra donc les raisonnements suivants pour montrer une implication ou une équivalence.

– Pour montrer une implication P ñ Q, on peut procéder :

– de manière directe : on suppose P vraie, et on montre que Q est alors vraie,
– par contraposée : on suppose Q fausse, et on montre que P est alors fausse.

– Pour démontrer une équivalence P ô Q, on peut procéder :

– par équivalence : on établit une succession d’équivalence : P ô . . . ô Q,
– par double implication : on montre séparément P ñ Q et Qñ P.

Montrer une implication, montrer une équivalence

3. Quantificateurs

a. Propositions quantifiées

Soit Ppxq un prédicat. On introduit les propositions suivantes.

– Quantificateur universel. La proposition @x, Ppxq est vraie si pour toute valeur de x, la proposition Ppxq
est vraie, et fausse sinon.

– Quantificateur existentiel. La proposition Dx P E, Ppxq est vraie s’il est possible de trouver au moins une
valeur de x telle que la proposition Ppxq est vraie, et fausse sinon.

Définition - Quantificateurs universel et existentiel

Remarques.

– Dans la pratique, la variable x a pour valeur un élément d’un ensemble E fixé, et on écrira alors @x P E, Ppxq
et Dx P E, Ppxq, qui ne sont autres que des notations pour @x, px P E ñ Ppxqq et Dx, px P E ñ Ppxqq.

– Il faut bien noter que @x, Ppxq et Dx, Ppxq ne sont pas des prédicats, mais bien des propositions : leur valeur
de vérité ne dépend pas de la valeur d’une variable.
On retiendra que toute variable précédée par un quantificateur dans une proposition (on parle de variable
quantifiée) est muette : on peut changer son écriture sans changer la proposition : @x, Ppxq et @y, Ppyq sont en
fait les mêmes propositions.
Par conséquent, une variable quantifiée ne vit qu’à l’intérieur de la proposition.

Les quantificateurs sont des symboles mathématiques, pas des abréviations ! On ne les écrit pas au milieu d’une
phrase en français. On écrira dans ce cas “pour tout” ou “il existe” en toutes lettres.

Exemples.
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– Soit n P N. La proposition “n est pair” se récrit : Dk P N, n “ 2k.
– Soit f une fonction de R dans R.

– La proposition “f est positive sur R” se récrit : @x P R, fpxq ě 0.
– La proposition “f est croissante sur R” se récrit : @x, y P R, px ď y ñ fpxq ď fpyqq.

Pour montrer une proposition du type @x P E,Ppxq, on commence par fixer un élément x P E, puis on montre
que Ppxq est vraie. On aura alors bien montré que Ppxq est vraie pour tous les éléments x P E.
Dans la pratique, on écrit :

Soit x P E. Montrons Ppxq.

Preuve de Ppxq

Montrer une proposition universelle

Pour montrer une proposition du type Dx P E, Ppxq, on peut :

– soit utiliser une preuve constructive, c’est-à-dire trouver un exemple explicite d’élément x0 de E tel que
Ppxq est vraie, dans ce cas on écrira :

Posons x0 “ . . . Montrons Ppx0q.

Preuve de Ppx0q

– soit utiliser un théorème dit d’existence, qui prouvera l’existence de x, sans en donner un exemple explicite.

Montrer une proposition existentielle

Exemples.
– Montrons : Dx P r0, 3s, x2 ´ 3x` 2 ă 0.

Posons x0 “
3
2
. On a bien x0 P r0, 3s et x2

0 ´ 3x0 ` 2 “ ´ 1
4
ă 0. La proposition est donc démontrée.

– Montrons : Dx P R, ex ` x “ 0.
On définit sur R la fonction f : x ÞÑ x` ex. Comme e´1 ă 1, on a fp´1q ă 0. Par ailleurs, fp0q “ 1.
Par conséquent, comme f est continue sur R et fp´1q ă 0, fp0q ą 0, le théorème des valeurs intermédiaires
assure l’existence de x Ps ´ 1, 0r tel que fpxq “ 0, ce qui conclut.

Soient E un ensemble et Ppxq un prédicat.

– La proposition ␣
`

@x P E, Ppxq
˘

est équivalente à Dx P E, ␣Ppxq.
– La proposition ␣

`

Dx P E, Ppxq
˘

est équivalente à @x P E, ␣Ppxq.

Théorème - Négation des proposition quantifiées

Exemples.

– Négation de “tous les humains ont les yeux bleus” : “il existe au moins un humain qui n’a pas les yeux bleus”.
– Négation de “@x P R, fpxq “ 0” : “Dx P R, fpxq ‰ 0”.

À retenir. Pour nier une proposition avec des quantificateurs, on pourra procéder de la manière suivante.

1. On remplace les quantificateurs @ par D, et les quantificateurs D par @,
2. On nie le prédicat final.

Exemple. Négation de @x P E, Dy P F, Ppx, yq : Dx P E, @y P F, ␣Ppx, yq.
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Exemple. Soit f : RÑ R une fonction. Écrivons la négation de P : “f est croissante” sous la forme d’une proposition
quantifiée. Comme on l’a vu, P est équivalente à @x P R, @y P R, x ď y ñ fpxq ď fpyq. Ainsi, ␣P équivaut à

Dx P R, Dy P R, x ď y et fpxq ą fpyq.

Dans une proposition faisant intervenir plusieurs quantificateurs, il faut faire très attention à l’ordre des quanti-
ficateurs. À titre d’exemple :

– La proposition “@x P R, Dy P R, x ă y” est vraie : pour tout réel x, on peut trouver un réel y tel que x ă y,
il suffit par exemple de choisir y “ x` 1.

– Mais la proposition “Dy P R, @x P R, x ă y” est fausse : on ne peut pas trouver de réel y qui soit supérieur
à tous les réels.

On méditera aussi sur l’exemple suivant : la proposition “dans toutes les cerises, il y a un noyau”, est bien différente
de la proposition “il y a un noyau qui est dans toutes les cerises” !

Permutation de quantificateurs.

– On peut permuter deux quantificateurs universels ou deux quantificateurs existentiels sans changer la valeur
de vérité de la proposition :

`

@x, @y, Ppx, yq
˘

ô
`

@y, @x, Ppx, yq
˘

, et
`

Dx, Dy, Ppx, yq
˘

ô
`

Dy, Dx, Ppx, yq
˘

.

– On ne peut pas permuter deux quantificateurs différents : en général la proposition
`

@x, Dy, Ppx, yq
˘

n’est
pas équivalente à

`

Dy, @x, Ppx, yq
˘

.

Remarque. On peut donc regrouper les quantificateurs @ consécutifs ou les quantificateurs D consécutifs. Par exemple,
la proposition @a P R, @b P R, pa ` bq2 “ a2 ` 2ab ` b2 se récrit @pa, bq P R2, pa ` bq2 “ a2 ` 2ab ` b2, ou encore
@a, b P R, pa` bq2 “ a2 ` 2ab` b2.

b. Existence et unicité

Notation. Si Ppxq est un prédicat, on note D !x P E, Ppxq la proposition qui est vraie s’il existe un unique élément
x P E tel que Ppxq est vraie, et fausse sinon.

Exemple. La proposition D !n P N, 3 ď 2n ď 5 est vraie : il existe un unique entier n vérifiant 3 ď 2n ď 5, il s’agit de
n “ 2.

Pour montrer qu’une proposition du type D !x P E, Ppxq est vraie, on est amené à montrer :

– l’existence : on montre que qu’il y a au moins un élément x P E tel que Ppxq est vraie (Dx P E, Ppxq),
– l’unicité : on montre qu’il y a au plus un élément x P E tel que Ppxq est vraie.

Pour démontrer l’unicité, on peut supposer que deux éléments vérifient la propriété recherchée puis montrer que
ces éléments sont égaux.
Dans la pratique, on écrit :

Soient x, y P E tels que Ppxq et Ppyq sont vraies. Montrons que x “ y.

Preuve de x “ y.

Lorsqu’on a écrit cette preuve, on n’a pas démontré l’existence ! On a seulement montré que s’il existe un
élément x P E tel que Ppxq est vraie, alors il est unique.

Montrer l’unicité

Remarque. Certaines démonstrations d’existence et unicité se font au moyen d’un raisonnement par analyse-synthèse,
que nous détaillerons plus loin.
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II Ensembles
Un ensemble est une collection ou un groupement d’objets, qu’on appelle les éléments de l’ensemble.
Notation : si E est un ensemble, on note x P E si x est un élément de E et x R E si x ne l’est pas.

Pour définir un ensemble, on peut procéder des différentes manières suivantes.

– Définition en extension : on énumère tous les éléments de l’ensemble. On s’autorise aussi parfois à n’écrire que
le début de l’énumération des éléments lorsque la suite se comprend implicitement.

Exemples : A “ t1, 3, 4, 6, 9u, B “ t3, 6, 9, . . .u, N “ t0, 1, 2, 3, . . .u, P “ t0, 2, 4, 6, . . .u.

– Définition en compréhension : on sélectionne dans un ensemble plus gros les éléments vérifiant une certaine
propriété : E “ tx P F, Ppxqu.

Exemples : P “ tn P N, n est pairu, R` “ tx P R, x ě 0u.

– Définition paramétrique : on décrit l’ensemble comme l’ensemble des images fpxq d’une fonction f lorsque x
parcourt un ensemble A donné : E “ tfpxq, x P Au.

Exemples : P “ t2k, k P Nu, C “ tn2, n P Nu.

Exemple. Les ensembles de nombres N, Z, D “
␣

a
10n , a P Z et n P N

(

, Q “
!

p
q , p P Z et q P N‹

)

, R, C.

Si E est un ensemble ayant un nombre fini d’éléments, on appelle cardinal de E le nombre de ses éléments. On
le note CardE, ou |E|.

Définition - Cardinal

Remarques. – L’ensemble ne contenant aucun élément est appelé l’ensemble vide et est noté ∅.
– Un ensemble ne contenant qu’un seul élément est appelé un singleton.

1. Inclusion, égalité d’ensembles, ensemble des parties d’un ensemble

Soient A et B deux ensembles. On dit que A est inclus dans B si tout élément de A appartient à B, c’est-à-dire

@x, x P Añ x P E, ou encore @x P A, x P E.

Dans ce cas, on note A Ă B. On dit aussi que A est une partie, ou un sous-ensemble de B.
On note par ailleurs PpAq l’ensemble des parties de A.

Définition - Inclusion, ensemble des parties d’un ensemble

Remarques.

– On peut donc écrire indifféremment A Ă B ou A PPpBq.
– L’ensemble PpAq est un ensemble d’ensembles : ses éléments sont les parties de A.
– Les ensembles ∅ et A sont toujours des parties de A.

Exemple. Ppt1, 2, 3uq “ t∅, t1u, t2u, t3u, t1, 2u, t1, 3u, t2, 3u, t1, 2, 3uu.

On dit que deux ensembles A et B sont égaux, et on note A “ B, si A et B ont exactement les mêmes éléments.
Autrement dit, @x, x P A ô x P B.
Ainsi, A “ B équivaut à pA Ă B et B Ă Aq.

Définition-théorème - Egalité de deux ensembles

Comme l’inclusion et l’égalité entre ensembles s’écrivent à l’aide d’une implication ou d’une équivalence, la preuve de
ces assertions se rédige comme nous l’avons vu plus haut.
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– Soient A,B deux ensembles. Pour montrer que A Ă B, on écrit :

Soit x P A. Montrons que x P B.

Preuve de x P B.

– Pour montrer que A “ B, on peut :

– soit montrer séparément que A Ă B, puis que B Ă A (on dira qu’on raisonne par double inclusion),
– soit raisonner par équivalence : Soit x. On a x P A ô . . . ô x P B.

Montrer une inclusion ou une égalité d’ensembles

Exemple. Soit A “ tx P R, @y P R`, x ď yu. Montrons que A “ R´.

On procède par double inclusion.

Ă Soit x P A, c’est-à-dire que pour tout y P R`, on a x ď y. Montrons que x P R´.

En prenant y “ 0, on obtient que x ď 0, donc x P R´.

Ą Soit x P R´. Montrons que x P A.

Soit y P R‹
`. On a x ď 0 ď y, donc x ď y, et x P A.

2. Opérations sur les ensembles

Soient A et B deux ensembles.

– On appelle union de A et B l’ensemble AYB “ tx P E, x P A ou x P Bu.
– On appelle intersection de A et B l’ensemble AXB “ tx P E, x P A et x P Bu.

Définition - Union, intersection

Remarques. – Pour tout ensemble A, on a AYA “ A et AXA “ A.
– Si A Ă E, alors AY∅ “ A et AX E “ A.
– Si A et B sont deux ensembles, on a AXB Ă A et A Ă AYB.

Soient A, B et C trois ensembles. On a les propriétés suivantes.

– Commutativité : AYB “ B YA et AXB “ B XA

– Associativité : pAYBq Y C “ AY pB Y Cq et pAXBq X C “ AX pB X Cq

– Distributivité : AX pB Y Cq “ pAXBq Y pAX Cq et AY pB X Cq “ pAYBq X pAY Cq.

Théorème - Propriétés de l’intersection et de l’union

Exemple. Si A et B sont deux ensembles, alors : ˛ A Ă B ô AYB “ B,
˛ A Ă B ô AXB “ A.

On peut généraliser l’intersection et l’union à un nombre quelconque de sous-ensembles. Si pAiqiPI est une famille
d’ensembles, on définit ď

iPI

Ai “ tx, Di P I, x P Aiu et
č

iPI

Ai “ tx, @i P I, x P Aiu.

Exemples. 1.
ď

nPN
tnu “ N, 2.

ď

nPN
rn, n` 1r“ R`, 3.

č

nPN‹

„

´
1

n
,
1

n

„

“

`8
č

n“1

„

´
1

n
,
1

n

„

“ t0u.

– On dit que deux ensembles A et B sont disjoints si A X B “ ∅, c’est-à-dire s’ils n’ont aucun élément en
commun. Dans ce cas, on note parfois A\B au lieu de AYB.

– Soit E un ensemble. On dit qu’un ensemble tAi, i P Iu de parties non vides de E est une partition si :

i. les ensembles Ai sont deux à deux disjoints : si i ‰ j, alors Ai XAj “ ∅,

Définition - Ensembles disjoints, partition
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ii.
Ů

iPI

Ai “ E.

Exemples. 1. Si A “ t2k, k P Nu et B “ t2k ` 1, k P Nu, alors A et B forment une partition de N.

En effet, AXB “ ∅, et AYB “ N.

2. Si Cn “ rn, n` 1r pour tout n P N, alors les ensembles Cn forment une partition de R`.

Soient E un ensemble et A,B des parties de E.

– On appelle différence de B dans A l’ensemble BzA “ tx P B, x R Au.
– On appelle complémentaire de A dans E l’ensemble EzA. On le note A ou Ac lorsqu’il n’y a pas d’ambiguïté.

On a donc A “ tx P E, x R Au, ou encore : @x P E, x P A ô x R A.

Définition - Différence, complémentaire

Remarques. – Si A Ă E, alors AYA “ E et AXA “ ∅ : A et A forment une partition de E.
– Si A et B sont deux ensembles, BzA “ B XA.
– Si A et B sont deux ensembles, A Ă B ô B Ă A.

En effet, la contraposée de x P Añ x P B s’écrit x R B ñ x R A.

– Si A Ă E, alors A “ A, E “ ∅ et ∅ “ E.

Exemple. Le complémentaire dans R de l’intervalle s ´ 1, 3s est l’ensemble s ´ 8,´1s Y s3,`8r.

Si E est un ensemble et A et B sont deux parties de E, alors

AXB “ AYB et AYB “ AXB.

Théorème - Lois de Morgan

Démonstration. Ceci découle directement des lois de Morgan pour les propositions (exercice : s’en convaincre !).

Exercice 1. Montrer que pour tous A,B PPpEq, on a pAzBq Y pBzAq “ pAYBqzpAXBq. Cet ensemble est appelé
différence symétrique de A et B et se note A∆B.

Soient E et F deux ensembles. On définit le produit cartésien de E et de F , noté E ˆ F , comme l’ensemble des
couples dont la première composante est un élément de E et la seconde un élément de F , c’est-à-dire

E ˆ F “ tpx, yq, x P E et y P F u.

Dans le cas où E “ F , on note E2 au lieu de E ˆ E.

Définition - Produit cartésien

Un couple px, yq et un ensemble à deux éléments tx, yu sont des objets mathématiques bien différents. Par exemple,
t1, 2u “ t2, 1u, mais p1, 2q ‰ p2, 1q, ou encore : t1, 1u “ t1u, mais p1, 1q ‰ p1q.

Généralisation. Si E1, . . . , En sont des ensembles, on définit le produit cartésien de ces ensembles par

E1 ˆ . . .ˆ En “ tpx1, . . . , xnq, @i P J1, nK, xi P Eiu.

Un élément px1, . . . , xnq de E1 ˆ . . .ˆ En est appelé un n´uplet.
Lorsque E1 “ . . . “ En, on note En au lieu de E ˆ . . .ˆ En.

Remarques.

– Dans une proposition quantifiée, il est équivalent d’écrire “@x P A, @y P B . . .” ou “@px, yq P AˆB, . . .”.
– On a par ailleurs tendance à condenser l’écriture “@px, yq P E2, . . .” en “@x, y P E, . . .”.
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III Raisonnement
Pour démontrer qu’une proposition P est vraie, on peut penser aux raisonnements suivants.

– Déduction. Si on sait que Q est vraie et que Qñ P est vraie, alors P est vraie (modus ponens).

C’est le raisonnement utilisé lorsqu’on invoque un théorème pour montrer un résultat.

– Disjonction de cas. On peut souhaiter séparer la démonstration d’une proposition en l’étude d’une liste ex-
haustive de sous-cas.
En particulier, il arrive qu’on distingue le cas où une proposition Q est vraie, et celui ou elle est fausse. On aura
alors montré Qñ P et ␣Qñ P, ce qui suffit à montrer que P est vraie.

Exercice 2. Montrer que pour tout n P N, n2 ` n est un entier pair.

– Raisonnement par l’absurde. On commence par supposer que P est fausse, puis on montre qu’on peut alors en
déduire une contradiction, c’est-à-dire une proposition de la forme Q^ p␣Qq. On en conclut que P est vraie.

Montrer P par l’absurde. Pour montrer que P est vrai en raisonnant par l’absurde, on écrit :

Supposons que P est fausse.

Alors . . . , il y a donc contradiction.

Donc P est vraie.

Exemple. Montrons que
?
2 est irrationnel.

Raisonnons par l’absurde : supposons que
?
2 est rationnel. On sait donc qu’il existe p P N et q P N‹

tels que
?
2 “ p

q , où la fraction p
q est irréductible, c’est-à-dire que p et q sont premiers entre eux.

Comme
?
2 “

p

q
, on a 2 “

p2

q2
, donc p2 “ 2q2.

Ceci implique que p2 est pair donc, comme nous l’avons vu, p est pair. Autrement dit, il existe k P N
tel que p “ 2k. Ainsi,

2q2 “ p2kq2 “ 4k2, donc q2 “ 2k2.

Par conséquent, q2 est pair. À nouveau, ceci implique que q est pair. Finalement, on a montré que p
est pair et q est pair, donc p et q ont 2 pour diviseur commun, et p

q n’est pas sous forme irréductible,
il y a contradiction.
On en conclut que

?
2 n’est pas rationnel.

Nous avons déjà rencontré le cas de la démonstration d’une proposition sous la forme d’une implication ou d’une
équivalence. Nous détaillons deux techniques supplémentaires qui s’appliquent à des situations bien particulières.

1. Raisonnement par analyse synthèse

Il faut penser à cette démarche :

– lorsqu’on cherche à résoudre un problème du type “trouver tous les x tels que Ppxq” (par exemple : une équation
ou une inéquation),

– lorsqu’on cherche à montrer une proposition du type “il existe un unique x tel que Ppxq”. Ceci revient d’ailleurs
au cas ci-dessus, auquel on ajoute le fait qu’il y a une unique solution x.

On procède en deux étapes :

– Analyse : On suppose qu’il existe x tel que Ppxq est vraie et on cherche à en déduire des valeurs possibles
de x. On raisonne par conditions nécessaires.

Raisonner par analyse-synthèse
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Analyse. Soit x tel que Ppxq est vraie.
. . . , alors (nécessairement) x P t. . .u

Ensemble des
“candidats”

.

On obtient un ensemble qui contient tous les “candidats possibles” pour x. C’est-à-dire que x ne peut pas
prendre d’autres valeurs, mais on ne peut garantir à ce stade que toutes ces valeurs sont solutions.

– Synthèse : “on vérifie si le ou les candidats sont valides”. On détermine les éléments x dans l’ensemble de
“candidats” ci-dessus pour lesquels Ppxq est vraie.
En d’autres termes, on détermine si les conditions nécessaires sont suffisantes.

On conclut ensuite en donnant l’intégralité des solutions, déterminées lors de la synthèse.

Remarque. Lorsqu’on utilise ce raisonnement pour montrer “D!x P E, Ppxq”, on écrit :

Analyse. Soit x tel que Ppxq.

. . . , alors x “ x0 (à ce stade on a montré l’unicité).

Synthèse. Montrons que Ppx0q est vrai

Preuve de Ppx0q (ce qui montre l’existence).

.

Exemple. Résolvons l’équation
?
x “ 2x´ 1, d’inconnue x P R par analyse-synthèse.

– Analyse. Soit x P R` une solution de l’équation. En composant par la fonction carrée, on obtient alors

x “ p2x´ 1q2 “ 4x2 ´ 4x` 1, donc 4x2 ´ 5x` 1 “ 0.

Comme les racines de 4x2 ´ 5x` 1 sont 1 et 1
4 , on en déduit que x P

␣

1
4 , 1

(

.

– Synthèse. On constate que 1 est bien solution de l’équation, mais 1
4 ne l’est pas.

On a donc montré que 1 est la seule solution de l’équation.

Exemple. Soit f une fonction de R dans R. Montrons qu’il existe un unique couple de fonctions pg, hq tel que g est
paire, h est impaire et f “ g ` h (en d’autres termes, f s’écrit de manière unique comme la somme d’une fonction
paire et d’une fonction impaire).

– Analyse. Soit pg, hq un couple de fonctions de R dans R telles que g est paire, h est impaire et f “ g ` h.
Pour tout x P R, on a alors "

fpxq “ gpxq ` hpxq,
fp´xq “ gpxq ´ hpxq

du fait que gp´xq “ gpxq et hp´xq “ ´hpxq. En additionnant, puis en soustrayant les deux égalités ci-dessus,
on obtient

gpxq “
1

2
pfpxq ` fp´xqq, et hpxq “

1

2
pfpxq ´ fp´xqq.

– Synthèse. Si on pose g : x ÞÑ 1
2 pfpxq ` fp´xqq et h : x ÞÑ 1

2 pfpxq ´ fp´xqq, on a

˛ pour tout x P R, gpxq ` hpxq “ fpxq, donc f “ g ` h,
˛ pour tout x P R, fp´xq “ fpxq, donc f est paire,
˛ pour tout x P R, gp´xq “ ´gpxq, donc g est impaire.

Ainsi, le couple pg, hq est l’unique couple de fonctions qui convient.

2. Raisonnement par récurrence

On considère un prédicat Ppnq qui porte sur la variable n à valeurs dans N. Le raisonnement par récurrence fournit
un moyen de montrer : @n P N, Ppnq.

Principe de récurrence. Si on a :

– Pp0q est vraie (Initialisation),
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– @n P N, Ppnq ñ Ppn` 1q est vraie (Hérédité),

alors @n P N, Ppnq est vraie.

Montrons par récurrence que pour tout n P N, Ppnq est vraie.

– Initialisation. Preuve de Pp0q .

– Hérédité. Soit n P N. Supposons Ppnq. Montrons Ppn` 1q.

Preuve de Ppn` 1q .

Rédiger une démonstration par récurrence

Dans l’hérédité, on ne suppose surtout pas que Ppnq est vraie pour tout n (sinon, il n’y a plus rien à prouver !),
mais bien que Ppnq est vraie pour un entier n fixé. On montre qu’alors Ppn` 1q est encore vraie.

Remarque. On peut adapter ce raisonnement pour le cas où on souhaite montrer @n ě n0, Ppnq, où n0 P N. Il suffit
alors de remplacer Pp0q par Ppn0q dans l’initialisation, et de fixer un entier n ě n0 dans l’hérédité.

Exemple. Soit x un réel positif. Montrons que pour tout n P N, p1` xqn ě 1` nx.

Nous allons raisonner par récurrence. Pour tout n P N, on note Ppnq : “p1` xqn ě 1` nx”.

– Initialisation. Si n “ 0, on a p1` xqn “ 1 “ 1` nx, donc Pp0q est vraie.
– Hérédité. Soit n P N. Supposons que Ppnq est vraie et montrons que Ppn` 1q est vraie. On a

p1` xqn`1 “ p1` xqp1` xqn ě p1` xqp1` nxq.

car d’après l’hypothèse de récurrence, p1`xqn ě 1`nx, et 1`x ě 0. Ainsi, on trouve en développant
que p1` xqn`1 ě 1` pn` 1qx` nx2 ě 1` pn` 1qx, car nx2 ě 0. Par conséquent, Ppn` 1q est vraie.

Remarque. Soient n1, n2 deux entiers naturels, si l’hérédité n’est valable que pour n P Jn1, n2K, on parle de récurrence
finie :

si Ppn1q est vraie et @n P Jn1, n2 ´ 1K,Ppnq ñ Ppn` 1q est vraie, alors @n P Jn1, n2K,Ppnq est vraie.

Récurrence double

Parfois, on ne parvient pas à déduire Ppn` 1q de Ppnq, mais on parvient à montrer Ppn` 2q en supposant que Ppnq
et Ppn` 1q sont vraies. On peut alors utiliser le principe dit de récurrence double :

si Pp0q est vraie et @n P N, pPpnq et Ppn` 1qq ñ Ppn` 2q est vraie, alors @n P N, Ppnq est vraie.

Il s’agit en faut d’une simple adaptation du principe ci-dessus : on montre par récurrence que pour tout n P N, Ppnq
et Ppn` 1q sont vraies. On rédige alors de la manière suivante.

– Initialisation. Preuve de Pp0q et Pp1q .

– Hérédité. Soit n P N. Supposons Ppnq et Ppn` 1q. Montrons Ppn` 2q.

Preuve de Ppn` 2q .

Rédaction d’une récurrence double

Exemple. Soit la suite punqnPN définie par : u0 “ u1 “ ´1, et pour tout n P N, un`2 “ 5un`1 ´ 6un. Montrons que
pour tout n P N, un “ 3n ´ 2n`1.

Pour n P N, on note Ppnq la proposition “un “ 3n ´ 2n`1”.

– Initialisation. Si n “ 0, on a 3n ´ 2n`1 “ ´1 “ u0, donc Pp0q est vraie,
Si n “ 1, on a 3n ´ 2n`1 “ ´1 “ u1 donc Pp1q est vraie.
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– Hérédité. Soit n P N. Supposons que Ppnq et Ppn` 1q sont vraies et montrons Ppn` 2q. On a

un`2 “ 5un`1 ´ 6un “ 5 p3n`1 ´ 2n`2q ´ 6 p3n ´ 2n`1q “ 9ˆ 3n ´ 4ˆ 2n`1 “ 3n`2 ´ 2n`3.

Ainsi, Ppn` 2q est vraie.

On a donc montré par récurrence double que pour tout n P N, un “ 3n ´ 2n`1.

Remarque. Si nécessaire, on peut bien sûr également faire des raisonnements par récurrence triple, voire des récur-
rences d’ordre supérieur.

Récurrence forte

Il arrive même qu’on ait besoin de supposer que toutes les propositions Pp0q, . . . ,Ppnq sont vraies pour en déduire
Ppn` 1q. On peut s’appuyer sur le principe dit de récurrence forte :

si Pp0q est vraie et @n P N, p@k P J0, nK, Ppkqq ñ Ppn` 1q est vraie, alors @n P N, Ppnq est vraie.

À nouveau, il s’agit d’une simple adaptation du principe de récurrence : on montre par récurrence que pour tout n P N,
Pp0q, . . . ,Ppnq sont vraies.

– Initialisation. Preuve de Pp0q .

– Hérédité. Soit n P N. Supposons Pp0q, . . . ,Ppnq vraies. Montrons Ppn` 1q.

Preuve de Ppn` 1q .

Rédaction d’une récurrence forte

Exemple. Montrons que tout entier n ě 2 admet un diviseur premier.

Pour tout entier n ě 2, on note Ppnq : “n admet un diviseur premier”. Montrons par récurrence forte que
Ppnq est vraie pour tout n ě 2.

– Initialisation. Comme 2 est premier, Pp2q est clairement vraie.
– Hérédité. Soit n ě 2. On suppose que Ppkq est vraie pour tout k ď n. Montrons Ppn` 1q.

Si n` 1 est premier, alors Ppn` 1q est clairement vérifiée.
Si en revanche n` 1 n’est pas premier, alors il admet un diviseur dans J2, nK. On peut donc
écrire n` 1 “ ab, où a et b sont deux entiers appartenant à J2, nK. L’hypothèse de récurrence
assure alors que a possède un diviseur premier, qui est aussi diviseur de n`1, ce qui conclut.
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